, Volume 13, Issue 3, pp 189–194 | Cite as

Novel NDE1 homozygous mutation resulting in microhydranencephaly and not microlyssencephaly

  • Ayse Guven
  • Aysegul Gunduz
  • Tarik M. Bozoglu
  • Cengiz Yalcinkaya
  • Aslıhan Tolun
Original Article


Lissencephaly is characterized by deficient cortical lamination. Recently homozygous NDE1 mutations were reported in three kindred afflicted with extreme microcephaly with lissencephaly or microlissencephaly. Another severe developmental defect that involves the brain is microhydranencephaly which manifests with microcephaly, motor and mental retardation and brain malformations that include gross dilation of the ventricles with complete absence of the cerebral hemispheres or severe delay in their development. In the three related patients with microhydranencephaly that we had reported previously, we identified a homozygous deletion that encompasses NDE1 exon 2 containing the initiation codon. The mutation is predicted to result in a null allele. Herein we compare the clinical phenotypes of our research patients to those reported as microlissencephaly. The clinical findings in our patients having the fourth NDE1 mutation reported so far widen the spectrum of brain malformations resulting from mutations in NDE1.


Microhydranencephaly Microlissencephaly NDE1 MHAC 



We thank the family for participating in the study. This work was supported by the Turkish Academy of Sciences.


All experiments comply with the laws of the Republic of Turkey, the country in which they were performed. The authors declare that they have no conflict of interests.


  1. 1.
    Kavaslar GN, Onengüt S, Derman O, Kaya A, Tolun A (2000) The novel genetic disorder microhydranencephaly maps to chromosome 16p13.3-12.1. Am J Hum Genet 66(5):1705–1709. doi: 10.1086/302898 PubMedCrossRefGoogle Scholar
  2. 2.
    Behunova J, Zavadilikova E, Bozoglu TM, Gunduz A, Tolun A, Yalcinkaya C (2010) Familial microhydranencephaly, a family that does not map to 16p13.13-p12.2: relationship with hereditary fetal brain degeneration and fetal brain disruption sequence. Clin Dysmorphol 19:107–118. doi: 10.1097/MCD.0b013e32833946e9 PubMedCrossRefGoogle Scholar
  3. 3.
    Alkuraya FS, Cai X, Emery C et al (2011) Human mutations in NDE1 cause extreme microcephaly with lissencephaly. Am J Hum Genet 88:536–547. doi: 10.1016/j.ajhg.2011.04.003 PubMedCrossRefGoogle Scholar
  4. 4.
    Bakircioglu M, Carvalho OP, Khurshid M et al (2011) The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis. Am J Hum Genet 88:523–535. doi: 10.1016/j.ajhg.2011.03.019 PubMedCrossRefGoogle Scholar
  5. 5.
    Efimov VP, Morris NR (2000) The LIS1-related NUDF protein of Aspergillus nidulans interacts with the coiled-coil domain of the NUDE/RO11 protein. J Cell Biol 150:681–688. doi: 10.1083/jcb.150.3.681 PubMedCrossRefGoogle Scholar
  6. 6.
    Hirohashi Y, Wang Q, Liu Q, Li B, Du X, Zhang H, Furuuchi K, Masuda K, Sato N, Greene MI (2006) Centrosomal proteins Nde1 and Su48 form a complex regulated by phosphorylation. Oncogene 25:6048–6055. doi: 10.1038/sj.onc.1209637 PubMedCrossRefGoogle Scholar
  7. 7.
    Vergnolle MA, Taylor SS (2007) Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr Biol 17:1173–1179. doi: 10.1016/j.cub.2007.05.077 PubMedCrossRefGoogle Scholar
  8. 8.
    Yan X, Li F, Liang Y, Shen Y, Zhao X, Huang Q, Zhu X (2003) Human Nudel and NudE as regulators of cytoplasmic dynein in poleward protein transport along the mitotic spindle. Mol Cell Biol 23:1239–1250. doi: 10.1128/MCB.23.4.1239-1250.2003 PubMedCrossRefGoogle Scholar
  9. 9.
    Stehman SA, Chen Y, McKenney RJ, Vallee RB (2007) NudE and NudEL are required for mitotic progression and are involved in dynein recruitment to kinetochores. J Cell Biol 178:583–594. doi: 10.1083/jcb.200610112 PubMedCrossRefGoogle Scholar
  10. 10.
    Kitagawa M, Umezu M, Aoki J, Koizumi H, Arai H, Inoue K (2000) Direct association of LIS1, the lissencephaly gene product, with a mammalian homologue of a fungal nuclear distribution protein, rNUDE. FEBS Lett 479:57–62. doi: 10.1016/S0014-5793(00)01856-1 PubMedCrossRefGoogle Scholar
  11. 11.
    Feng Y, Olson EC, Stukenberg PT, Flanagan LA, Kirschner MW, Walsh CA (2000) LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 28:665–679. doi: 10.1016/S0896-6273(00)00145-8 PubMedCrossRefGoogle Scholar
  12. 12.
    Feng Y, Walsh CA (2004) Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44:279–293. doi: 10.1016/j.neuron.2004.09.023 PubMedCrossRefGoogle Scholar
  13. 13.
    Pawlisz AS, Mutch C, Wynshaw-Boris A, Chenn A, Walsh CA, Feng Y (2008) Lis1-Nde1-dependent neuronal fate control determines cerebral cortical size and lamination. Hum Mol Genet 17:2441–2455. doi: 10.1093/hmg/ddn144 PubMedCrossRefGoogle Scholar
  14. 14.
    Wildeman M, van Ophuizen E, den Dunnen JT, Taschner PE (2008) Improving sequence variant descriptions in mutation databases and literature using the MUTALYZER sequence variation nomenclature checker. Hum Mutat 29:6–13. doi: 10.1002/humu.20654 PubMedCrossRefGoogle Scholar
  15. 15.
    Collins J, Schwartz C (2002) Detecting polymorphisms and mutations in candidate genes. Am J Hum Genet 71:1251–12522. doi: 10.1086/344344 PubMedCrossRefGoogle Scholar
  16. 16.
    Greco F, Finocchiaro M, Pavone P, Trifiletti RR, Parano E (2001) Hemihydranencephaly: case report and literature review. J Child Neurol 16:218–221. doi: 10.1177/088307380101600311 PubMedCrossRefGoogle Scholar
  17. 17.
    Kato M, Das S, Petras K et al (2004) Mutations of ARX are associated with striking pleiotropy and consistent genotype–phenotype correlation. Hum Mutat 23:147–159. doi: 10.1002/humu.10310 PubMedCrossRefGoogle Scholar
  18. 18.
    Witters I, Moerman P, Devriendt K (2002) Two siblings with early onset fetal akinesia deformation sequence and hydranencephaly: further evidence for autosomal recessive inheritance of hydranencephaly, fowler type. Am J Med Genet 108:41–44. doi: 10.1002/ajmg.10208 PubMedCrossRefGoogle Scholar
  19. 19.
    Kitamura K, Yanazawa M, Sugiyama N et al (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–369. doi: 10.1038/ng1009 PubMedCrossRefGoogle Scholar
  20. 20.
    Uyanik G, Aigner L, Martin P et al (2003) ARX mutations in X-linked lissencephaly with abnormal genitalia. Neurology 61:232–235PubMedCrossRefGoogle Scholar
  21. 21.
    Stromme P, Mangelsdorf ME, Shaw MA et al (2002) Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet 30:441–445. doi: 10.1038/ng862 PubMedCrossRefGoogle Scholar
  22. 22.
    Bienvenu T, Poirier K, Friocourt G et al (2002) ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Hum Mol Genet 11:981–991. doi: 10.1093/hmg/11.8.981 PubMedCrossRefGoogle Scholar
  23. 23.
    Scheffer IE, Wallace RH, Phillips FL et al (2002) X-linked myoclonic epilepsy with spasticity and intellectual disability: mutation in the homeobox gene ARX. Neurology 59:348–356PubMedCrossRefGoogle Scholar
  24. 24.
    Alexander IE, Tauro GP, Bankier A (1995) Fetal brain disruption sequence in sisters. Eur J Pediatr 154:654–657. doi: 10.1007/BF02079071 PubMedCrossRefGoogle Scholar
  25. 25.
    Schram A, Kroes HY, Sollie K, Timmer B, Barth P, van Essen T (2004) Hereditary fetal brain degeneration resembling fetal brain disruption sequence in two sibships. Am J Med Genet 127A:172–182. doi: 10.1002/ajmg.a.20645 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ayse Guven
    • 1
  • Aysegul Gunduz
    • 2
  • Tarik M. Bozoglu
    • 1
  • Cengiz Yalcinkaya
    • 2
  • Aslıhan Tolun
    • 1
  1. 1.Department of Molecular Biology and GeneticsBoğaziçi UniversityIstanbulTurkey
  2. 2.Division of Child Neurology, Department of Neurology, Cerrahpasa Medical FacultyIstanbul UniversityIstanbulTurkey

Personalised recommendations