, Volume 13, Issue 3, pp 261–266 | Cite as

A genome-wide analysis of 'Bounty' descendants implicates several novel variants in migraine susceptibility

  • Hannah C. Cox
  • Rod A. Lea
  • Claire Bellis
  • Melanie Carless
  • Thomas D. Dyer
  • Joanne Curran
  • Jac Charlesworth
  • Stuart Macgregor
  • Dale Nyholt
  • Daniel Chasman
  • Paul M. Ridker
  • Markus Schürks
  • John Blangero
  • Lyn R. GriffithsEmail author
Original Article


Migraine is a common neurological disease with a complex genetic aetiology. The disease affects ~12 % of the Caucasian population and females are three times more likely than males to be diagnosed. In an effort to identify loci involved in migraine susceptibility, we performed a pedigree-based genome-wide association study of the isolated population of Norfolk Island, which has a high prevalence of migraine. This unique population originates from a small number of British and Polynesian founders who are descendents of the Bounty mutiny and forms a very large multigenerational pedigree (Bellis et al.; Human Genetics, 124(5):543–5542, 2008). These population genetic features may facilitate disease gene mapping strategies (Peltonen et al.; Nat Rev Genet, 1(3):182–90, 2000. In this study, we identified a high heritability of migraine in the Norfolk Island population (h 2 = 0.53, P = 0.016). We performed a pedigree-based GWAS and utilised a statistical and pathological prioritisation approach to implicate a number of variants in migraine. An SNP located in the zinc finger protein 555 (ZNF555) gene (rs4807347) showed evidence of statistical association in our Norfolk Island pedigree (P = 9.6 × 10−6) as well as replication in a large independent and unrelated cohort with >500 migraineurs. In addition, we utilised a biological prioritisation to implicate four SNPs, in within the ADARB2 gene, two SNPs within the GRM7 gene and a single SNP in close proximity to a HTR7 gene. Association of SNPs within these neurotransmitter-related genes suggests a disrupted serotoninergic system that is perhaps specific to the Norfolk Island pedigree, but that might provide clues to understanding migraine more generally.


Migraine Association Gene 



This research was supported by funding from the National Health and Medical Research Council (NHMRC) of Australia, from a Medical Bioinformatics Genomics Proteomics Program grant as well as an Australian DEST International Science Linkages grant. Hannah Cox was supported by a NHMRC Biomedical Postgraduate Scholarship and Rod Lea is partially supported by a Corbett Research Fellowship. The SOLAR statistical genetics computer package is supported by a grant from the US National Institute of Mental Health (MH059490). Lastly, we extend our appreciation to the Norfolk Islanders who volunteered for this study.

Supplementary material

10048_2012_325_MOESM1_ESM.doc (80 kb)
Supplementary document 1. Methodology. (DOC 80 kb)
10048_2012_325_MOESM2_ESM.doc (74 kb)
Supplementary Fig. 1 Manhattan Plot of autosomal genome-wide associations for migraine in the Norfolk Island pedigree. (DOC 73 kb)
10048_2012_325_MOESM3_ESM.pptx (142 kb)
Supplementary Fig. 2 (PPTX 142 kb)
10048_2012_325_MOESM4_ESM.doc (322 kb)
Supplementary Table 1 Summary of the top 0.05 % of SNPs (n = 172) detected in the Norfolk study (DOC 322 kb) (DOC 322 kb)
10048_2012_325_MOESM5_ESM.docx (78 kb)
Supplementary Table 2 Results of replication study in WGHS cohort. (DOCX 78 kb)
10048_2012_325_MOESM6_ESM.docx (166 kb)
ESM 2 (DOCX 166 kb)


  1. 1.
    Bellis C et al (2008) Linkage mapping of CVD risk traits in the isolated Norfolk Island population. Hum Genet 124(5):543–552PubMedCrossRefGoogle Scholar
  2. 2.
    Peltonen L, Palotie A, Lange K (2000) Use of population isolates for mapping complex traits. Nat Rev Genet 1(3):182–190PubMedCrossRefGoogle Scholar
  3. 3.
    ICHD-II (2004) International classification of headache disorders, 2nd edn. Cephalalgia 24(suppl 1): 1–160Google Scholar
  4. 4.
    Lipton RB, Bigal ME (2005) Migraine: epidemiology, impact, and risk factors for progression. Headache: The Journal of Head and Face Pain 45:S3–S13CrossRefGoogle Scholar
  5. 5.
    Stewart WF et al (2006) Familial risk of migraine: variation by proband age at onset and headache severity. Neurology 66(3):344–348PubMedCrossRefGoogle Scholar
  6. 6.
    Cologno D, Pascale AD, Manzoni GC (2003) Familial occurrence of migraine with aura in a population-based study. Headache: The Journal of Head and Face Pain 43(3):231–234CrossRefGoogle Scholar
  7. 7.
    Mulder EJ et al (2003) Genetic and environmental influences on migraine: a twin study across six countries. Twin Research 6:422–431PubMedGoogle Scholar
  8. 8.
    Svensson DA et al (2003) Shared rearing environment in migraine: results from twins reared apart and twins reared together. Headache: The Journal of Head and Face Pain 43(3):235–244CrossRefGoogle Scholar
  9. 9.
    De Fusco M et al (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K + pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33(2):192–196PubMedCrossRefGoogle Scholar
  10. 10.
    Dichgans M et al (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366(9483):371–377PubMedCrossRefGoogle Scholar
  11. 11.
    Ophoff RA et al (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87(3):543–552PubMedCrossRefGoogle Scholar
  12. 12.
    Lafreniere RG et al (2010) A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nature Medicine 16:1157–1160PubMedCrossRefGoogle Scholar
  13. 13.
    Pietrobon D (2007) Familial hemiplegic migraine. Neurotherapeutics 4(2):274–284PubMedCrossRefGoogle Scholar
  14. 14.
    Anttila V et al (2010) Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet 42:869–873PubMedCrossRefGoogle Scholar
  15. 15.
    Macgregor S et al (2010) Legacy of mutiny on the Bounty: founder effect and admixture on Norfolk Island. Eur J Hum Genet 18:67–72PubMedCrossRefGoogle Scholar
  16. 16.
    Hoare M (1999) Norfolk Island: a revised and enlarged history 1774–1998, 5th edn. Central Queensland University Press, Rockhampton, p 228 pagesGoogle Scholar
  17. 17.
    Matthews SP (2001) Norfolk Island census of population and housing 7 August 2001—statistical report on characteristics of population and dwellings. Photopress International, Norfolk IslandGoogle Scholar
  18. 18.
    Cox HC et al (2012) Heritability and genome-wide linkage analysis of migraine in the genetic isolate of Norfolk Island. Gene 494(1):119–123PubMedCrossRefGoogle Scholar
  19. 19.
    Deprez L et al (2007) Familial occipitotemporal lobe epilepsy and migraine with visual aura: Linkage to chromosome 9q. Neurology 68(23):1995–2002PubMedCrossRefGoogle Scholar
  20. 20.
    Ligthart L et al (2008) A genome-wide linkage scan provides evidence for both new and previously reported loci influencing common migraine. Am J Med Genet B: Neuropsychiatric Genetics 147B(7):1186–1195CrossRefGoogle Scholar
  21. 21.
    Evans DM, Cardon LR (2004) Guidelines for genotyping in genomewide linkage studies: single-nucleotide-polymorphism maps versus microsatellite maps. Am J Hum Genet 75(4):687–692PubMedCrossRefGoogle Scholar
  22. 22.
    John S et al (2004) Whole-genome scan, in a complex disease, using 11,245 single-nucleotide polymorphisms: comparison with microsatellites. Am J Hum Genet 75(1):54–64PubMedCrossRefGoogle Scholar
  23. 23.
    Lipton RB et al (2007) Migraine prevalence, disease burden, and the need for preventive therapy. Neurology 68(5):343–349PubMedCrossRefGoogle Scholar
  24. 24.
    Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62(5):1198–1211PubMedCrossRefGoogle Scholar
  25. 25.
    Igl W et al (2010) Modeling of environmental effects in genome-wide association studies identifies SLC2A2 and HP as novel loci influencing serum cholesterol levels. PLoS Genet 6(1):e1000798PubMedCrossRefGoogle Scholar
  26. 26.
    Mostafavi S et al (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9(S4). doi: 10.1186/gb-2008-9-s1-s4
  27. 27.
    Chanock SJ et al (2007) Replicating genotype–phenotype associations. Nature 447:655–660PubMedCrossRefGoogle Scholar
  28. 28.
    Schürks M, Buring JE, Kurth T (2009) Agreement of self-reported migraine with ICHD-II criteria in the Women's Health Study. Cephalalgia 29(10):1086–1090PubMedCrossRefGoogle Scholar
  29. 29.
    Kurth T et al (2006) Migraine and risk of cardiovascular disease in women. JAMA 296(3):283–291PubMedCrossRefGoogle Scholar
  30. 30.
    Ridker PM et al (2008) Rationale, design, and methodology of the Women' Genome Health Study: a genome-wide association study of more than 25,000 initially healthy American women. Clin Chem 54(2):249–255PubMedCrossRefGoogle Scholar
  31. 31.
    Zee RYL et al (2007) Homocysteine, 5,10-Methylenetetrahydrofolate Reductase 677 C-T Polymorphism, Nutrient Intake, and Incident Cardiovascular Disease in 24 968 Initially Healthy Women. Clinical 53(5):845–851Google Scholar
  32. 32.
    Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46PubMedCrossRefGoogle Scholar
  33. 33.
    Urbach A, Bruehl C, Witte OW (2006) Microarray-based long-term detection of genes differentially expressed after cortical spreading depression. Eur J Neurosci 24:841–856PubMedCrossRefGoogle Scholar
  34. 34.
    Puri V et al (2005) Ovarian steroids regulate neuropeptides in the trigeminal ganglion. Neuropeptides 39(4):409–417PubMedCrossRefGoogle Scholar
  35. 35.
    Maas S et al (2006) A-to-I RNA editing and human disease. RNA Biol 3(1):1–9PubMedCrossRefGoogle Scholar
  36. 36.
    Hanna GL et al (2007) Evidence for a susceptibility locus on chromosome 10p15 in early-onset obsessive-compulsive disorder. Biol Psychiatr 62(8):856–862CrossRefGoogle Scholar
  37. 37.
    Bard JA et al (1993) Cloning of a novel human serotonin recepto (r5-HT7) positively linked to adenylate cyclase. J Biol Chem 268(31):23422–23426PubMedGoogle Scholar
  38. 38.
    Vanhoenacker P, Haegeman G, Leysen JE (2000) 5-HT7 receptors: current knowledge and future prospects. Trends Pharmacol Sci 21:70–77PubMedCrossRefGoogle Scholar
  39. 39.
    Hamel E (2007) Serotonin and migraine: biology and clinical implications. Cephalalgia 27(11):1293–1300PubMedCrossRefGoogle Scholar
  40. 40.
    Shields KG, Goadsby PJ (2006) Serotonin receptors modulate trigeminovascular responses in ventroposteromedial nucleus of thalamus: a migraine target? Neurobiol Dis 23(3):491–501PubMedCrossRefGoogle Scholar
  41. 41.
    Corominas R et al (2009) Association study of the serotoninergic system in migraine in the Spanish population. Am J Med Genet B: Neuropsychiatric Genetics 153B(1):177–184Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hannah C. Cox
    • 1
  • Rod A. Lea
    • 1
  • Claire Bellis
    • 1
    • 2
  • Melanie Carless
    • 2
  • Thomas D. Dyer
    • 2
  • Joanne Curran
    • 2
  • Jac Charlesworth
    • 2
    • 3
  • Stuart Macgregor
    • 4
  • Dale Nyholt
    • 4
  • Daniel Chasman
    • 5
    • 6
  • Paul M. Ridker
    • 5
    • 6
  • Markus Schürks
    • 5
    • 7
  • John Blangero
    • 2
  • Lyn R. Griffiths
    • 1
    Email author
  1. 1.Genomics Research Centre, Griffith Health InstituteGriffith UniversityAustralia
  2. 2.Department of GeneticsTexas Biomedical Research InstituteSan AntonioUSA
  3. 3.Menzies Research InstituteUniversity of TasmaniaHobartAustralia
  4. 4.Statistical Genetics Laboratory, Queensland Institute of Medical ResearchThe Bancroft CentreHerstonAustralia
  5. 5.Division of Preventive Medicine, Department of Medicine, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  6. 6.Donald W. Reynolds Center for Cardiovascular Disease Prevention, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  7. 7.Department of NeurologyUniversity Hospital EssenEssenGermany

Personalised recommendations