, Volume 13, Issue 1, pp 93–96

Neuroferritinopathy: a new inborn error of iron metabolism

  • Michael J. Keogh
  • Patricia Jonas
  • Alan Coulthard
  • Patrick F. Chinnery
  • John Burn
Short Communication


Neuroferritinopathy is an autosomal dominant progressive movement disorder which occurs due to mutations in the ferritin light chain gene (FTL1). It presents in mid-adult life and is the only autosomal dominant disease in a group of conditions termed neurodegeneration with brain iron accumulation (NBIA). We performed brain MRI scans on 12 asymptomatic descendants of known mutation carriers. All three harbouring the pathogenic c.460InsA mutation showed iron deposition; these findings show pathological iron accumulation begins in early childhood which is of major importance in understanding and developing treatment for NBIA.


Neurodegeneraion Brain iron Ferritin Extrapyramidal Metabolism Movement disorder 


  1. 1.
    Curtis AR et al (2001) Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28(4):350–354PubMedCrossRefGoogle Scholar
  2. 2.
    Vidal R et al (2004) Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene. J Neuropathol Exp Neurol 63(4):363–380PubMedGoogle Scholar
  3. 3.
    Maciel P et al (2005) Neuroferritinopathy: missense mutation in FTL causing early-onset bilateral pallidal involvement. Neurology 65(4):603–605PubMedCrossRefGoogle Scholar
  4. 4.
    Mancuso M et al (2005) Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights. J Neuropathol Exp Neurol 64(4):280–294PubMedGoogle Scholar
  5. 5.
    Ohta E et al (2008) Neuroferritinopathy in a Japanese family with a duplication in the ferritin light chain gene. Neurology 70(16 Pt 2):1493–1494PubMedCrossRefGoogle Scholar
  6. 6.
    Devos D et al (2009) Clinical features and natural history of neuroferritinopathy caused by the 458dupA FTL mutation. Brain 132(Pt 6):e109PubMedCrossRefGoogle Scholar
  7. 7.
    Kubota A et al (2009) A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: description of clinical features and implications for genotype-phenotype correlations. Mov Disord 24(3):441–445PubMedCrossRefGoogle Scholar
  8. 8.
    Barbeito AG et al (2009) Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene. J Neurochem 109(4):1067–1078PubMedCrossRefGoogle Scholar
  9. 9.
    Hayflick SJ et al (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348(1):33–40PubMedCrossRefGoogle Scholar
  10. 10.
    Gregory A, Hayflick SJ (2011) Genetics of neurodegeneration with brain iron accumulation. Curr Neurol Neurosci Rep 11:254–261PubMedCrossRefGoogle Scholar
  11. 11.
    Gregory A, Polster BJ, Hayflick SJ (2009) Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet 46(2):73–80PubMedCrossRefGoogle Scholar
  12. 12.
    Chinnery PF et al (2007) Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain 130(Pt 1):110–119PubMedGoogle Scholar
  13. 13.
    McNeill A et al (2008) T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 70(18):1614–1619PubMedCrossRefGoogle Scholar
  14. 14.
    Zhou B et al (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28(4):345–349PubMedCrossRefGoogle Scholar
  15. 15.
    Schneider SA, Hardy J, Bhatia KP (2009) Iron accumulation in syndromes of neurodegeneration with brain iron accumulation 1 and 2: causative or consequential? J Neurol Neurosurg Psychiatry 80(6):589–590PubMedCrossRefGoogle Scholar
  16. 16.
    Paisan-Ruiz C et al (2009) Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 65(1):19–23PubMedCrossRefGoogle Scholar
  17. 17.
    Santoro L et al (2011) Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics 12(1):33–39PubMedCrossRefGoogle Scholar
  18. 18.
    Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3(1):41–51PubMedCrossRefGoogle Scholar
  19. 19.
    Gelman N et al (1999) MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210(3):759–767PubMedGoogle Scholar
  20. 20.
    Kwiatkowski A et al (2011) Long-term improvement under deferiprone in a case of neurodegeneration with brain iron accumulation. Parkinsonism Relat Disord (in press)Google Scholar
  21. 21.
    Fogel BL, Perlman S (2007) Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol 6(3):245–257PubMedCrossRefGoogle Scholar
  22. 22.
    Di Prospero NA et al (2007) Neurological effects of high-dose idebenone in patients with Friedreich's ataxia: a randomised, placebo-controlled trial. Lancet Neurol 6(10):878–886PubMedCrossRefGoogle Scholar
  23. 23.
    Tonon C, Lodi R (2008) Idebenone in Friedreich's ataxia. Expert Opin Pharmacother 9(13):2327–2337PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Michael J. Keogh
    • 1
    • 2
  • Patricia Jonas
    • 1
  • Alan Coulthard
    • 3
  • Patrick F. Chinnery
    • 1
    • 2
  • John Burn
    • 1
  1. 1.Institute of Genetic Medicine, International Centre for LifeNewcastle UniversityNewcastle Upon TyneUK
  2. 2.Department of Neurology, Royal Victoria InfirmaryNewcastle Upon TyneUK
  3. 3.Department of Medical ImagingRoyal Brisbane HospitalBrisbaneAustralia

Personalised recommendations