neurogenetics

, Volume 13, Issue 1, pp 31–47 | Cite as

Genotype–phenotype correlation in interstitial 6q deletions: a report of 12 new cases

  • Jill A. Rosenfeld
  • Dina Amrom
  • Eva Andermann
  • Frederick Andermann
  • Martin Veilleux
  • Cynthia Curry
  • Jamie Fisher
  • Stephen Deputy
  • Arthur S. Aylsworth
  • Cynthia M. Powell
  • Kandamurugu Manickam
  • Bryce Heese
  • Melissa Maisenbacher
  • Cathy Stevens
  • Jay W. Ellison
  • Sheila Upton
  • John Moeschler
  • Wilfredo Torres-Martinez
  • Abby Stevens
  • Robert Marion
  • Elaine Maria Pereira
  • Melanie Babcock
  • Bernice Morrow
  • Trilochan Sahoo
  • Allen N. Lamb
  • Blake C. Ballif
  • Alex R. Paciorkowski
  • Lisa G. Shaffer
Original Article

Abstract

Interstitial deletions of 6q are associated with variable phenotypes, including growth retardation, dysmorphic features, upper limb malformations, and Prader–Willi (PW)-like features. Only a minority of cases in the literature have been characterized with high resolution techniques, making genotype–phenotype correlations difficult. We report 12 individuals with overlapping, 200-kb to 16.4-Mb interstitial deletions within 6q15q22.33 characterized by microarray-based comparative genomic hybridization to better correlate deletion regions with specific phenotypes. Four individuals have a PW-like phenotype, though only two have deletion of SIM1, the candidate gene for this feature. Therefore, other genes on 6q may contribute to this phenotype including multiple genes on 6q16 and our newly proposed candidate, the transcription cofactor gene VGLL2 on 6q22.2. Two individuals present with movement disorders as a major feature, and ataxia is present in a third. The 4.1-Mb 6q22.1q22.2 critical region for movement disorders includes the cerebellar-expressed candidate gene GOPC. Observed brain malformations include thick corpus callosum in two subjects, cerebellar vermal hypoplasia in two subjects, and cerebellar atrophy in one subject. Seven subjects' deletions overlap a ~250-kb cluster of four genes on 6q22.1 including MARCKS, HDAC2, and HS3ST5, which are involved in neural development. Two subjects have only this gene cluster deleted, and one deletion was apparently de novo, suggesting at least one of these genes plays an important role in development. Although the phenotypes associated with 6q deletions can vary, using overlapping deletions to delineate critical regions improves genotype–phenotype correlation for interstitial 6q deletions.

Keywords

Microarray Prader–Willi-like phenotype Movement disorders Epilepsy Microcephaly 6q deletion 

Supplementary material

10048_2011_306_MOESM1_ESM.pdf (341 kb)
ESM 1(PDF 341 kb)

References

  1. 1.
    Klein OD, Cotter PD, Moore MW, Zanko A, Gilats M, Epstein CJ, Conte F, Rauen KA (2007) Interstitial deletions of chromosome 6q: genotype–phenotype correlation utilizing array CGH. Clin Genet 71(3):260–266. doi:10.1111/j.1399-0004.2007.00757.x PubMedCrossRefGoogle Scholar
  2. 2.
    Zherebtsov MM, Klein RT, Aviv H, Toruner GA, Hanna NN, Brooks SS (2007) Further delineation of interstitial chromosome 6 deletion syndrome and review of the literature. Clin Dysmorphol 16(3):135–140. doi:10.1097/MCD.0b013e3281e668d5 PubMedCrossRefGoogle Scholar
  3. 3.
    Hansson K, Szuhai K, Knijnenburg J, van Haeringen A, de Pater J (2007) Interstitial deletion of 6q without phenotypic effect. Am J Med Genet A 143A(12):1354–1357. doi:10.1002/ajmg.a.31783 PubMedCrossRefGoogle Scholar
  4. 4.
    Chen CP, Wang TH, Lin SP, Chern SR, Chen MR, Lee CC, Chen YJ, Wang W (2006) 24 Mb deletion of 6q22.1 → q23.2 in an infant with pulmonary atresia, ventricular septal defect, microcephaly, developmental delay and facial dysmorphism. Eur J Med Genet 49(6):516–519. doi:10.1016/j.ejmg.2006.04.002 PubMedCrossRefGoogle Scholar
  5. 5.
    Le Caignec C, Swillen A, Van Asche E, Fryns JP, Vermeesch JR (2005) Interstitial 6q deletion: clinical and array CGH characterisation of a new patient. Eur J Med Genet 48(3):339–345. doi:10.1016/j.ejmg.2005.04.010 PubMedCrossRefGoogle Scholar
  6. 6.
    Grati FR, Lalatta F, Turolla L, Cavallari U, Gentilin B, Rossella F, Cetin I, Antonazzo P, Bellotti M, Dulcetti F, Baldo D, Tenconi R, Simoni G, Miozzo M (2005) Three cases with de novo 6q imbalance and variable prenatal phenotype. Am J Med Genet A 136(3):254–258. doi:10.1002/ajmg.a.30837 PubMedGoogle Scholar
  7. 7.
    Derwinska K, Bernaciak J, Wisniowiecka-Kowalnik B, Obersztyn E, Bocian E, Stankiewicz P (2009) Autistic features with speech delay in a girl with an approximately 1.5-Mb deletion in 6q16.1, including GPR63 and FUT9. Clin Genet 75(2):199–202. doi:10.1111/j.1399-0004.2008.01077.x PubMedCrossRefGoogle Scholar
  8. 8.
    Traylor RN, Fan Z, Hudson B, Rosenfeld JA, Shaffer LG, Torchia BS, Ballif BC (2009) Microdeletion of 6q16.1 encompassing EPHA7 in a child with mild neurological abnormalities and dysmorphic features: case report. Mol Cytogenet 2:17. doi:10.1186/1755-8166-2-17 PubMedCrossRefGoogle Scholar
  9. 9.
    Woo KS, Kim JE, Kim KE, Kim MJ, Yoo JH, Ahn HS, Shaffer LG, Han JY (2010) A de novo proximal 6q deletion confirmed by array comparative genomic hybridization. Korean J Lab Med 30(1):84–88. doi:10.3343/kjlm.2010.30.1.84 PubMedCrossRefGoogle Scholar
  10. 10.
    Wentzel C, Lynch SA, Stattin EL, Sharkey FH, Anneren G, Thuresson AC (2010) Interstitial deletions at 6q14.1-q15 associated with obesity, developmental delay and a distinct clinical phenotype. Mol Syndromol 1(2):75–81. doi:10.1159/000314025 PubMedCrossRefGoogle Scholar
  11. 11.
    Spreiz A, Muller D, Zotter S, Albrecht U, Baumann M, Fauth C, Erdel M, Zschocke J, Utermann G, Kotzot D (2010) Phenotypic variability of a deletion and duplication 6q16.1 → q21 due to a paternal balanced ins(7;6)(p15;q16.1q21). Am J Med Genet A 152A(11):2762–2767. doi:10.1002/ajmg.a.33699 PubMedCrossRefGoogle Scholar
  12. 12.
    Hopkin RJ, Schorry E, Bofinger M, Milatovich A, Stern HJ, Jayne C, Saal HM (1997) New insights into the phenotypes of 6q deletions. Am J Med Genet 70(4):377–386PubMedCrossRefGoogle Scholar
  13. 13.
    Duran-Gonzalez J, Gutierrez-Angulo M, Garcia-Cruz D, Ayala Mde L, Padilla M, Davalos IP (2007) A de novo interstitial 6q deletion in a boy with a split hand malformation. J Appl Genet 48(4):405–407PubMedCrossRefGoogle Scholar
  14. 14.
    Tsukahara M, Yoneda J, Azuma R, Nakashima K, Kito N, Ouchi K, Kanehara Y (1997) Interstitial deletion of 6q21-q23 associated with split hand. Am J Med Genet 69(3):268–270PubMedCrossRefGoogle Scholar
  15. 15.
    Pandya A, Braverman N, Pyeritz RE, Ying KL, Kline AD, Falk RE (1995) Interstitial deletion of the long arm of chromosome 6 associated with unusual limb anomalies: report of two new patients and review of the literature. Am J Med Genet 59(1):38–43. doi:10.1002/ajmg.1320590109 PubMedCrossRefGoogle Scholar
  16. 16.
    Bonaglia MC, Ciccone R, Gimelli G, Gimelli S, Marelli S, Verheij J, Giorda R, Grasso R, Borgatti R, Pagone F, Rodriguez L, Martinez-Frias ML, van Ravenswaaij C, Zuffardi O (2008) Detailed phenotype–genotype study in five patients with chromosome 6q16 deletion: narrowing the critical region for Prader–Willi-like phenotype. Eur J Hum Genet 16(12):1443–1449. doi:10.1038/ejhg.2008.119 PubMedCrossRefGoogle Scholar
  17. 17.
    Faivre L, Cormier-Daire V, Lapierre JM, Colleaux L, Jacquemont S, Genevieve D, Saunier P, Munnich A, Turleau C, Romana S, Prieur M, De Blois MC, Vekemans M (2002) Deletion of the SIM1 gene (6q16.2) in a patient with a Prader–Willi-like phenotype. J Med Genet 39(8):594–596PubMedCrossRefGoogle Scholar
  18. 18.
    Villa A, Urioste M, Bofarull JM, Martinez-Frias ML (1995) De novo interstitial deletion q16.2q21 on chromosome 6. Am J Med Genet 55(3):379–383. doi:10.1002/ajmg.1320550326 PubMedCrossRefGoogle Scholar
  19. 19.
    Gilhuis HJ, van Ravenswaaij CM, Hamel BJ, Gabreels FJ (2000) Interstitial 6q deletion with a Prader–Willi-like phenotype: a new case and review of the literature. Eur J Paediatr Neurol 4(1):39–43. doi:10.1053/ejpn.1999.0259 PubMedCrossRefGoogle Scholar
  20. 20.
    Turleau C, Demay G, Cabanis MO, Lenoir G, de Grouchy J (1988) 6q1 monosomy: a distinctive syndrome. Clin Genet 34(1):38–42PubMedCrossRefGoogle Scholar
  21. 21.
    Varela MC, Simoes-Sato AY, Kim CA, Bertola DR, De Castro CI, Koiffmann CP (2006) A new case of interstitial 6q16.2 deletion in a patient with Prader–Willi-like phenotype and investigation of SIM1 gene deletion in 87 patients with syndromic obesity. Eur J Med Genet 49(4):298–305. doi:10.1016/j.ejmg.2005.12.002 PubMedCrossRefGoogle Scholar
  22. 22.
    Stein CK, Stred SE, Thomson LL, Smith FC, Hoo JJ (1996) Interstitial 6q deletion and Prader–Willi-like phenotype. Clin Genet 49(6):306–310PubMedCrossRefGoogle Scholar
  23. 23.
    Ballif BC, Theisen A, McDonald-McGinn DM, Zackai EH, Hersh JH, Bejjani BA, Shaffer LG (2008) Identification of a previously unrecognized microdeletion syndrome of 16q11.2q12.2. Clin Genet 74(5):469–475. doi:10.1111/j.1399-0004.2008.01094.x PubMedCrossRefGoogle Scholar
  24. 24.
    Duker AL, Ballif BC, Bawle EV, Person RE, Mahadevan S, Alliman S, Thompson R, Traylor R, Bejjani BA, Shaffer LG, Rosenfeld JA, Lamb AN, Sahoo T (2010) Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader–Willi syndrome. Eur J Hum Genet. doi:10.1038/ejhg.2010.102
  25. 25.
    Ensembl Genome Browser. (2011) EMBL-EBI and Wellcome Trust Sanger Institute. http://www.ensembl.org/index.html. Accessed 9 September 2011
  26. 26.
    UniProt (2011) UniProt Consortium. http://www.uniprot.org/. Accessed 9 September 2011
  27. 27.
    OMIM: Online Mendelian Inheritance in Man (2011) Johns Hopkins University and National Center for Biotechnology Information, U.S. National Library of Medicine. http://www.ncbi.nlm.nih.gov/omim. Accessed 9 September 2011
  28. 28.
    EntrezGene (2011) National Center for Biotechnology Information, U.S. National Library of Medicine. http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene. Accessed 9 September 2011
  29. 29.
    NCBI Reference Sequence (RefSeq) (2011) National Center for Biotechnology Information, U.S. National Library of Medicine. http://www.ncbi.nlm.nih.gov/refseq/. Accessed 9 September 2011
  30. 30.
    UniGene: Organized View of the Transcriptome (2011) National Center for Biotechnology Information, U.S. National Library of Medicine. http://www.ncbi.nlm.nih.gov/unigene. Accessed 9 September 2011
  31. 31.
    GEDI: Gene Discovery/Genetic Disease (2008) Computation Institute, University of Chicago. http://gedi.ci.uchicago.edu/. Accessed 9 September 2011
  32. 32.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. doi:10.1038/75556 PubMedCrossRefGoogle Scholar
  33. 33.
    Mouse Genome Database (MGD), Mouse genome informatics (2011) The Jackson Laboratory. http://www.informatics.jax.org. Accessed 9 September 2011
  34. 34.
    Gene Expression Atlas (2011) EMBL-EBI (European Bioinformatics Institute). http://www.ebi.ac.uk/gxa/. Accessed 9 September 2011
  35. 35.
    Allen Brain Atlas Resources (2009) Allen Institute for Brain Science. http://www.brain-map.org/. Accessed 9 September 2011
  36. 36.
    The Gene Expression Nervous System Atlas (GENSAT) Project: NINDS Contracts N01NS02331 & HHSN271200723701C (2011) The Rockefeller University. http://www.gensat.org/index.html. Accessed 9 September 2011
  37. 37.
    The St. Jude Brain Gene Expression Map (BGEM) Project (2011) St. Jude Research, Hartwell Center. http://www.stjudebgem.org/web/mainPage/mainPage.php. Accessed 9 September 2011
  38. 38.
    Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37(Database issue):D412–D416. doi:10.1093/nar/gkn760 PubMedCrossRefGoogle Scholar
  39. 39.
    Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568. doi:10.1093/nar/gkq973 PubMedCrossRefGoogle Scholar
  40. 40.
    STRING: functional protein association networks (2009) CPR, EMBL, SIB, KU, TUD and UZH. http://string.embl.de/. Accessed 9 September 2011
  41. 41.
    Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD, Morris Q (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(Web Server issue):W214–W220. doi:10.1093/nar/gkq537 PubMedCrossRefGoogle Scholar
  42. 42.
    GeneMANIA (2011) Donnelly Centre for Cellular and Biomolecular Research, University of Toronto. http://genemania.org/. Accessed 9 September 2011
  43. 43.
    Fulp CT, Cho G, Marsh ED, Nasrallah IM, Labosky PA, Golden JA (2008) Identification of Arx transcriptional targets in the developing basal forebrain. Hum Mol Genet 17(23):3740–3760. doi:10.1093/hmg/ddn271 PubMedCrossRefGoogle Scholar
  44. 44.
    Paciorkowski AR, Thio LL, Rosenfeld JA, Gajecka M, Gurnett CA, Kulkarni S, Chung WK, Marsh ED, Gentile M, Reggin JD, Wheless JW, Balasubramanian S, Kumar R, Christian SL, Marini C, Guerrini R, Maltsev N, Shaffer LG, Dobyns WB (2011) Copy number variants and infantile spasms: evidence for abnormalities in ventral forebrain development and pathways of synaptic function. Eur J Hum Genet. doi:10.1038/ejhg.2011.121
  45. 45.
    Barkovich AJ, Millen KJ, Dobyns WB (2009) A developmental and genetic classification for midbrain–hindbrain malformations. Brain 132(Pt 12):3199–3230. doi:10.1093/brain/awp247 PubMedCrossRefGoogle Scholar
  46. 46.
    Millen KJ, Gleeson JG (2008) Cerebellar development and disease. Curr Opin Neurobiol 18(1):12–19. doi:10.1016/j.conb.2008.05.010 PubMedCrossRefGoogle Scholar
  47. 47.
    Huang N, Lee I, Marcotte EM, Hurles ME (2010) Characterising and predicting haploinsufficiency in the human genome. PLoS Genet 6(10):e1001154. doi:10.1371/journal.pgen.1001154 PubMedCrossRefGoogle Scholar
  48. 48.
    Shaikh TH, Gai X, Perin JC, Glessner JT, Xie H, Murphy K, O'Hara R, Casalunovo T, Conlin LK, D'Arcy M, Frackelton EC, Geiger EA, Haldeman-Englert C, Imielinski M, Kim CE, Medne L, Annaiah K, Bradfield JP, Dabaghyan E, Eckert A, Onyiah CC, Ostapenko S, Otieno FG, Santa E, Shaner JL, Skraban R, Smith RM, Elia J, Goldmuntz E, Spinner NB, Zackai EH, Chiavacci RM, Grundmeier R, Rappaport EF, Grant SF, White PS, Hakonarson H (2009) High-resolution mapping and analysis of copy number variations in the human genome: a data resource for clinical and research applications. Genome Res 19(9):1682–1690. doi:10.1101/gr.083501.108 PubMedCrossRefGoogle Scholar
  49. 49.
    Lupski JR, Belmont JW, Boerwinkle E, Gibbs RA (2011) Clan genomics and the complex architecture of human disease. Cell 147(1):32–43. doi:10.1016/j.cell.2011.09.008 PubMedCrossRefGoogle Scholar
  50. 50.
    Li H, Chen G, Zhou B, Duan S (2008) Actin filament assembly by myristoylated alanine-rich C kinase substrate-phosphatidylinositol-4,5-diphosphate signaling is critical for dendrite branching. Mol Biol Cell 19(11):4804–4813. doi:10.1091/mbc.E08-03-0294 PubMedCrossRefGoogle Scholar
  51. 51.
    Shiraishi M, Tanabe A, Saito N, Sasaki Y (2006) Unphosphorylated MARCKS is involved in neurite initiation induced by insulin-like growth factor-I in SH-SY5Y cells. J Cell Physiol 209(3):1029–1038. doi:10.1002/jcp.20814 PubMedCrossRefGoogle Scholar
  52. 52.
    Weimer JM, Yokota Y, Stanco A, Stumpo DJ, Blackshear PJ, Anton ES (2009) MARCKS modulates radial progenitor placement, proliferation and organization in the developing cerebral cortex. Development 136(17):2965–2975. doi:10.1242/dev.036616 PubMedCrossRefGoogle Scholar
  53. 53.
    Sasaki Y (2003) New aspects of neurotransmitter release and exocytosis: Rho-kinase-dependent myristoylated alanine-rich C-kinase substrate phosphorylation and regulation of neurofilament structure in neuronal cells. J Pharmacol Sci 93(1):35–40PubMedCrossRefGoogle Scholar
  54. 54.
    Yamaguchi H, Shiraishi M, Fukami K, Tanabe A, Ikeda-Matsuo Y, Naito Y, Sasaki Y (2009) MARCKS regulates lamellipodia formation induced by IGF-I via association with PIP2 and beta-actin at membrane microdomains. J Cell Physiol 220(3):748–755. doi:10.1002/jcp.21822 PubMedCrossRefGoogle Scholar
  55. 55.
    Hussain RJ, Stumpo DJ, Blackshear PJ, Lenox RH, Abel T, McNamara RK (2006) Myristoylated alanine rich C kinase substrate (MARCKS) heterozygous mutant mice exhibit deficits in hippocampal mossy fiber-CA3 long-term potentiation. Hippocampus 16(5):495–503. doi:10.1002/hipo.20177 PubMedCrossRefGoogle Scholar
  56. 56.
    Solomonia RO, Apkhazava D, Nozadze M, Jackson AP, McCabe BJ, Horn G (2008) Different forms of MARCKS protein are involved in memory formation in the learning process of imprinting. Exp Brain Res 188(2):323–330. doi:10.1007/s00221-008-1428-3 PubMedCrossRefGoogle Scholar
  57. 57.
    McNamara RK, Stumpo DJ, Morel LM, Lewis MH, Wakeland EK, Blackshear PJ, Lenox RH (1998) Effect of reduced myristoylated alanine-rich C kinase substrate expression on hippocampal mossy fiber development and spatial learning in mutant mice: transgenic rescue and interactions with gene background. Proc Natl Acad Sci U S A 95(24):14517–14522PubMedCrossRefGoogle Scholar
  58. 58.
    Stumpo DJ, Bock CB, Tuttle JS, Blackshear PJ (1995) MARCKS deficiency in mice leads to abnormal brain development and perinatal death. Proc Natl Acad Sci U S A 92(4):944–948PubMedCrossRefGoogle Scholar
  59. 59.
    Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi M (2003) Cell type- and region-specific expression of protein kinase C-substrate mRNAs in the cerebellum of the macaque monkey. J Comp Neurol 467(2):135–149. doi:10.1002/cne.10850 PubMedCrossRefGoogle Scholar
  60. 60.
    Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A (2008) S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455(7211):411–415. doi:10.1038/nature07238 PubMedCrossRefGoogle Scholar
  61. 61.
    Brunmeir R, Lagger S, Seiser C (2009) Histone deacetylase HDAC1/HDAC2-controlled embryonic development and cell differentiation. Int J Dev Biol 53(2–3):275–289. doi:10.1387/ijdb.082649rb PubMedCrossRefGoogle Scholar
  62. 62.
    Akhtar MW, Raingo J, Nelson ED, Montgomery RL, Olson EN, Kavalali ET, Monteggia LM (2009) Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J Neurosci 29(25):8288–8297. doi:10.1523/JNEUROSCI.0097-09.2009 PubMedCrossRefGoogle Scholar
  63. 63.
    Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN (2009) Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci U S A 106(19):7876–7881. doi:10.1073/pnas.0902750106 PubMedCrossRefGoogle Scholar
  64. 64.
    Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243):55–60. doi:10.1038/nature07925 PubMedCrossRefGoogle Scholar
  65. 65.
    Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21(14):1790–1802. doi:10.1101/gad.1563807 PubMedCrossRefGoogle Scholar
  66. 66.
    Mochizuki H, Yoshida K, Gotoh M, Sugioka S, Kikuchi N, Kwon YD, Tawada A, Maeyama K, Inaba N, Hiruma T, Kimata K, Narimatsu H (2003) Characterization of a heparan sulfate 3-O-sulfotransferase-5, an enzyme synthesizing a tetrasulfated disaccharide. J Biol Chem 278(29):26780–26787. doi:10.1074/jbc.M301861200 PubMedCrossRefGoogle Scholar
  67. 67.
    Duncan MB, Chen J, Krise JP, Liu J (2004) The biosynthesis of anticoagulant heparan sulfate by the heparan sulfate 3-O-sulfotransferase isoform 5. Biochim Biophys Acta 1671(1–3):34–43. doi:10.1016/j.bbagen.2003.12.010 PubMedCrossRefGoogle Scholar
  68. 68.
    Young RS, Fidone GS, Reider-Garcia PA, Hansen KL, McCombs JL, Moore CM (1985) Deletions of the long arm of chromosome 6: two new cases and review of the literature. Am J Med Genet 20(1):21–29. doi:10.1002/ajmg.1320200105 PubMedCrossRefGoogle Scholar
  69. 69.
    Schwartz MF, Kaffe S, Wallace S, Desnick RJ (1984) Interstitial deletion of the long arm of chromosome 6 [del(6) (q16q22)]: case report and review of the literature. Clin Genet 26(6):574–578PubMedCrossRefGoogle Scholar
  70. 70.
    Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, Yanagida K, Sato A, Toshimori K, Noda T (2002) Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci U S A 99(17):11211–11216. doi:10.1073/pnas.162027899 PubMedCrossRefGoogle Scholar
  71. 71.
    Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N (2002) A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron 35(5):921–933PubMedCrossRefGoogle Scholar
  72. 72.
    Roy K, Thiels E, Monaghan AP (2002) Loss of the tailless gene affects forebrain development and emotional behavior. Physiol Behav 77(4–5):595–600PubMedCrossRefGoogle Scholar
  73. 73.
    Stenman JM, Wang B, Campbell K (2003) Tlx controls proliferation and patterning of lateral telencephalic progenitor domains. J Neurosci 23(33):10568–10576PubMedGoogle Scholar
  74. 74.
    Kumar RA, Leach S, Bonaguro R, Chen J, Yokom DW, Abrahams BS, Seaver L, Schwartz CE, Dobyns W, Brooks-Wilson A, Simpson EM (2007) Mutation and evolutionary analyses identify NR2E1-candidate-regulatory mutations in humans with severe cortical malformations. Genes Brain Behav 6(6):503–516. doi:10.1111/j.1601-183X.2006.00277.x PubMedCrossRefGoogle Scholar
  75. 75.
    Mizutani R, Yamauchi J, Kusakawa S, Nakamura K, Sanbe A, Torii T, Miyamoto Y, Tanoue A (2009) Sorting nexin 3, a protein upregulated by lithium, contains a novel phosphatidylinositol-binding sequence and mediates neurite outgrowth in N1E-115 cells. Cell Signal 21(11):1586–1594. doi:10.1016/j.cellsig.2009.06.005 PubMedCrossRefGoogle Scholar
  76. 76.
    Vervoort VS, Viljoen D, Smart R, Suthers G, DuPont BR, Abbott A, Schwartz CE (2002) Sorting nexin 3 (SNX3) is disrupted in a patient with a translocation t(6;13)(q21;q12) and microcephaly, microphthalmia, ectrodactyly, prognathism (MMEP) phenotype. J Med Genet 39(12):893–899PubMedCrossRefGoogle Scholar
  77. 77.
    Holder JL Jr, Butte NF, Zinn AR (2000) Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum Mol Genet 9(1):101–108PubMedCrossRefGoogle Scholar
  78. 78.
    Michaud JL, Boucher F, Melnyk A, Gauthier F, Goshu E, Levy E, Mitchell GA, Himms-Hagen J, Fan CM (2001) Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Genet 10(14):1465–1473PubMedCrossRefGoogle Scholar
  79. 79.
    Maeda T, Chapman DL, Stewart AF (2002) Mammalian vestigial-like 2, a cofactor of TEF-1 and MEF2 transcription factors that promotes skeletal muscle differentiation. J Biol Chem 277(50):48889–48898. doi:10.1074/jbc.M206858200 PubMedCrossRefGoogle Scholar
  80. 80.
    Mielcarek M, Gunther S, Kruger M, Braun T (2002) VITO-1, a novel vestigial related protein is predominantly expressed in the skeletal muscle lineage. Mech Dev 119(Suppl 1):S269–S274PubMedCrossRefGoogle Scholar
  81. 81.
    Kurrasch DM, Cheung CC, Lee FY, Tran PV, Hata K, Ingraham HA (2007) The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J Neurosci 27(50):13624–13634. doi:10.1523/JNEUROSCI.2858-07.2007 PubMedCrossRefGoogle Scholar
  82. 82.
    Egawa M, Inoue S, Sato S, Takamura Y, Murakami N, Takahashi K (1991) Restoration of circadian corticosterone rhythm in ventromedial hypothalamic lesioned rats. Neuroendocrinology 53(6):543–548PubMedCrossRefGoogle Scholar
  83. 83.
    Cohen RS, Pfaff DW (1992) Ventromedial hypothalamic neurons in the mediation of long-lasting effects of estrogen on lordosis behavior. Prog Neurobiol 38(5):423–453PubMedCrossRefGoogle Scholar
  84. 84.
    Flier JS, Maratos-Flier E (1998) Obesity and the hypothalamus: novel peptides for new pathways. Cell 92(4):437–440. doi:S0092-8674(00)80937-X[pii] PubMedCrossRefGoogle Scholar
  85. 85.
    King BM (2006) The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav 87(2):221–244. doi:10.1016/j.physbeh.2005.10.007 PubMedCrossRefGoogle Scholar
  86. 86.
    Wang X, Xue C, Liu H, Xu Y, Zhao R, Jiang Z, Dodson MV, Chen J (2009) Differential display of expressed genes reveals a novel function of SFRS18 in regulation of intramuscular fat deposition. Int J Biol Sci 5(1):28–33PubMedCrossRefGoogle Scholar
  87. 87.
    Swindell WR (2009) Genes and gene expression modules associated with caloric restriction and aging in the laboratory mouse. BMC Genomics 10:585. doi:10.1186/1471-2164-10-585 PubMedCrossRefGoogle Scholar
  88. 88.
    de Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, Brady AF, Fairbrother UL, Dattani M, Keogh JM, Henning E, Yeo GS, O'Rahilly S, Froguel P, Farooqi IS, Blakemore AI (2009) A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 18(17):3257–3265. doi:10.1093/hmg/ddp263 PubMedCrossRefGoogle Scholar
  89. 89.
    Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, Garnica A, Cheung SW, Beaudet AL (2008) Prader–Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 40(6):719–721. doi:10.1038/ng.158 PubMedCrossRefGoogle Scholar
  90. 90.
    Jonassen T, Clarke CF (2000) Isolation and functional expression of human COQ3, a gene encoding a methyltransferase required for ubiquinone biosynthesis. J Biol Chem 275(17):12381–12387PubMedCrossRefGoogle Scholar
  91. 91.
    Quesada V, Diaz-Perales A, Gutierrez-Fernandez A, Garabaya C, Cal S, Lopez-Otin C (2004) Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem Biophys Res Commun 314(1):54–62PubMedCrossRefGoogle Scholar
  92. 92.
    Goshu E, Jin H, Lovejoy J, Marion JF, Michaud JL, Fan CM (2004) Sim2 contributes to neuroendocrine hormone gene expression in the anterior hypothalamus. Mol Endocrinol 18(5):1251–1262. doi:10.1210/me.2003-0372 PubMedCrossRefGoogle Scholar
  93. 93.
    Kokkotou E, Jeon JY, Wang X, Marino FE, Carlson M, Trombly DJ, Maratos-Flier E (2005) Mice with MCH ablation resist diet-induced obesity through strain-specific mechanisms. Am J Physiol Regul Integr Comp Physiol 289(1):R117–R124. doi:10.1152/ajpregu.00861.2004 PubMedCrossRefGoogle Scholar
  94. 94.
    Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier JS, Maratos-Flier E (2001) Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest 107(3):379–386. doi:10.1172/JCI10660 PubMedCrossRefGoogle Scholar
  95. 95.
    Zhang Q, Yuan CF, Wu MJ, Wang YG, Qin Q, Shi YY, Liu GL, Song FZ (2010) Comparative proteomic analysis of proteins influenced by melanin-concentrating hormone and melanin-concentrating hormone receptor 2 interaction. Horm Metab Res 42(7):521–527. doi:10.1055/s-0030-1249019 PubMedCrossRefGoogle Scholar
  96. 96.
    Peeters H, Voz ML, Verschueren K, De Cat B, Pendeville H, Thienpont B, Schellens A, Belmont JW, David G, Van De Ven WJ, Fryns JP, Gewillig M, Huylebroeck D, Peers B, Devriendt K (2006) Sesn1 is a novel gene for left–right asymmetry and mediating nodal signaling. Hum Mol Genet 15(22):3369–3377. doi:10.1093/hmg/ddl413 PubMedCrossRefGoogle Scholar
  97. 97.
    Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, Lecker S, Taegtmeyer H, Goldberg AL, Walsh K (2005) The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem 280(21):20814–20823. doi:10.1074/jbc.M500528200 PubMedCrossRefGoogle Scholar
  98. 98.
    Nisenberg O, Pegg AE, Welsh PA, Keefer K, Shantz LM (2006) Overproduction of cardiac S-adenosylmethionine decarboxylase in transgenic mice. Biochem J 393(Pt 1):295–302. doi:10.1042/BJ20051196 PubMedGoogle Scholar
  99. 99.
    Knoll R, Postel R, Wang J, Kratzner R, Hennecke G, Vacaru AM, Vakeel P, Schubert C, Murthy K, Rana BK, Kube D, Knoll G, Schafer K, Hayashi T, Holm T, Kimura A, Schork N, Toliat MR, Nurnberg P, Schultheiss HP, Schaper W, Schaper J, Bos E, Den Hertog J, van Eeden FJ, Peters PJ, Hasenfuss G, Chien KR, Bakkers J (2007) Laminin-alpha4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation 116(5):515–525. doi:10.1161/CIRCULATIONAHA.107.689984 PubMedCrossRefGoogle Scholar
  100. 100.
    Glover G, Lopez I, Gabarron J, Carmona JA (1988) Partial monosomy 6q(q15q21) by de novo interstitial deletion. Clin Genet 33(4):308–310PubMedCrossRefGoogle Scholar
  101. 101.
    Wakahama Y, Nakayama M, Fujimura M (1991) Autopsy findings in interstitial deletion 6q. Pediatr Pathol 11(1):97–103PubMedCrossRefGoogle Scholar
  102. 102.
    Chery M, Formiga LF, Mujica P, Andre M, Stehelin D, Dozier C, Gilgenkrantz S (1989) Interstitial deletion of the long arm of chromosome 6. Ann Genet 32(2):82–86PubMedGoogle Scholar
  103. 103.
    Cote GB, Papadakou-Lagoyanni S, Metaxotou C (1981) A de novo interstitial deletion of band q21 on chromosome 6. Ann Genet 24(3):170–171PubMedGoogle Scholar
  104. 104.
    Fryns JP, Vandenberghe K, Van den Berghe H (1991) Prune-belly anomaly and large interstitial deletion of the long arm of chromosome 6. Ann Genet 34(2):127PubMedGoogle Scholar
  105. 105.
    Nakagome Y, Tanaka T, Hashimoto T, Kuyama M, Maruyama M (1980) Interstitial deletion 6q in a malformed boy. Ann Genet 23(1):49–51PubMedGoogle Scholar
  106. 106.
    Park JP, Graham JM Jr, Berg SZ, Wurster-Hill DH (1988) A de novo interstitial deletion of chromosome 6 (q22.2q23.1). Clin Genet 33(2):65–68PubMedCrossRefGoogle Scholar
  107. 107.
    Horigome H, Takano T, Hirano T, Kajima T, Ohtani S (1991) Interstitial deletion of the long arm of chromosome 6 associated with absent pulmonary valve. Am J Med Genet 38(4):608–611. doi:10.1002/ajmg.1320380421 PubMedCrossRefGoogle Scholar
  108. 108.
    Bzduch V, Lukacova M (1989) Interstitial deletion of the long arm of chromosome 6(q22.2q23) in a boy with phenotypic features of Williams syndrome. Clin Genet 35(3):230–231PubMedCrossRefGoogle Scholar
  109. 109.
    Correa-Cerro L, Garciaz-Cruz D, Diaz-Castanos L, Figuera LE, Sanchez-Corona J (1996) Interstitial deletion 6q16.2q22.2 in a child with ectrodactyly. Ann Genet 39(2):105–109PubMedGoogle Scholar
  110. 110.
    Evers LJ, Schrander-Stumpel CT, Engelen JJ, Hoorntje TM, Pulles-Heintzberger CF, Schrander JJ, Albrechts JC, Peters J, Fryns JP (1996) Deletion of the long arm of chromosome 6: two new patients and literature review. Clin Genet 50(3):138–144PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jill A. Rosenfeld
    • 1
  • Dina Amrom
    • 2
    • 4
  • Eva Andermann
    • 2
    • 4
    • 5
  • Frederick Andermann
    • 3
    • 4
    • 6
  • Martin Veilleux
    • 3
    • 4
  • Cynthia Curry
    • 7
  • Jamie Fisher
    • 7
  • Stephen Deputy
    • 8
  • Arthur S. Aylsworth
    • 9
    • 10
  • Cynthia M. Powell
    • 9
    • 10
  • Kandamurugu Manickam
    • 9
    • 10
    • 19
  • Bryce Heese
    • 11
    • 20
  • Melissa Maisenbacher
    • 11
  • Cathy Stevens
    • 12
  • Jay W. Ellison
    • 13
    • 21
  • Sheila Upton
    • 14
  • John Moeschler
    • 14
  • Wilfredo Torres-Martinez
    • 15
  • Abby Stevens
    • 15
  • Robert Marion
    • 16
  • Elaine Maria Pereira
    • 16
  • Melanie Babcock
    • 17
  • Bernice Morrow
    • 17
  • Trilochan Sahoo
    • 1
    • 22
  • Allen N. Lamb
    • 1
    • 23
  • Blake C. Ballif
    • 1
  • Alex R. Paciorkowski
    • 18
  • Lisa G. Shaffer
    • 1
  1. 1.Signature Genomic Laboratories, PerkinElmer, Inc.SpokaneUSA
  2. 2.Neurogenetics Unit, Montreal Neurological Hospital & InstituteMontrealCanada
  3. 3.Epilepsy Service, Montreal Neurological Hospital & InstituteMontrealCanada
  4. 4.Department of Neurology & NeurosurgeryMcGill UniversityMontrealCanada
  5. 5.Department of Human GeneticsMcGill UniversityMontrealCanada
  6. 6.Department of PediatricsMcGill UniversityMontrealCanada
  7. 7.Genetic Medicine Central California/UCSFFresnoUSA
  8. 8.Children’s Hospital, New OrleansNew OrleansUSA
  9. 9.Department of PediatricsUniversity of North Carolina, School of MedicineChapel HillUSA
  10. 10.Department of GeneticsUniversity of North Carolina-Chapel HillChapel HillUSA
  11. 11.Shands Hospital at University of FloridaGainesvilleUSA
  12. 12.TC Thompson Children’s HospitalChattanoogaUSA
  13. 13.Mayo ClinicRochesterUSA
  14. 14.Medical Genetics, Children’s Hospital at Dartmouth, Dartmouth Hitchcock Medical CenterLebanonUSA
  15. 15.Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisUSA
  16. 16.Department of Pediatrics, Division of GeneticsChildren’s Hospital at MontefioreBronxUSA
  17. 17.Department of Molecular GeneticsAlbert Einstein College of MedicineBronxUSA
  18. 18.Department of NeurologyUniversity of Washington, and Seattle Children’s Research InstituteSeattleUSA
  19. 19.Nationwide Children’s HospitalColumbusUSA
  20. 20.Children’s Mercy HospitalKansas CityUSA
  21. 21.Signature Genomic Laboratories, PerkinElmer, Inc.SpokaneUSA
  22. 22.Quest Diagnostics Nichols InstituteSan Juan CapistranoUSA
  23. 23.ARUP Laboratories, University of UtahSalt Lake CityUSA

Personalised recommendations