, Volume 13, Issue 1, pp 23–29

Distinct DNA binding and transcriptional repression characteristics related to different ARX mutations

  • Ginam Cho
  • MacLean P. Nasrallah
  • Youngshin Lim
  • Jeffrey A. Golden
Original Article


Mutations in the Aristaless-related homeobox gene (ARX) are associated with a wide variety of neurologic disorders including lissencephaly, hydrocephaly, West syndrome, Partington syndrome, and X-linked intellectual disability with or without epilepsy. A genotype–phenotype correlation exists for ARX mutations; however, the molecular basis for this association has not been investigated. To begin understanding the molecular basis for ARX mutations, we tested the DNA binding sequence preference and transcriptional repression activity for Arx, deletion mutants and mutants associated with various neurologic disorders. We found DNA binding preferences of Arx are influenced by the amino acid sequences adjacent to the homeodomain. Mutations in the homeodomain show a loss of DNA binding activity, while the T333N and P353R homeodomain mutants still possess DNA binding activities, although less than the wild type. Transcription repression activity, the primary function of ARX, is reduced in all mutants except the L343Q, which has no DNA binding activity and does not functionally repress Arx targets. These data indicate that mutations in the homeodomain result in not only a loss of DNA binding activity but also loss of transcriptional repression activity. Our results provide novel insights into the pathogenesis of ARX-related disorders and possible directions to pursue potential therapeutic interventions.


ARX Lissencephaly X-linked intellectual disability Homeodomain 



Aristaless-related homeobox gene


Nuclear localization sequences


Systematic Evolution of Ligands by EXponential enrichment


X-linked lissencephaly with ambiguous genitalia


Electrophoretic mobility shift assays


Multiple EM for Motif Elucidation


  1. 1.
    Shoubridge C, Fullston T, Gecz J (2010) ARX spectrum disorders: making inroads into the molecular pathology. Hum Mutat 31(8):889–900. doi:10.1002/humu.21288 PubMedCrossRefGoogle Scholar
  2. 2.
    Friocourt G (2010) Mutations in ARX result in several defects involving GABAergic neurons. Front Cell Neurosci. doi:10.3389/fncel.2010.00004
  3. 3.
    Bonneau D, Toutain A, Laquerrière A, Marret S, Saugier-Veber P, Barthez M-A, Radi S, Biran-Mucignat V, Rodriguez D, Gélot A (2002) X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging, and neuropathological findings. Ann Neurol 51(3):340–349PubMedCrossRefGoogle Scholar
  4. 4.
    Colasante G, Collombat P, Raimondi V, Bonanomi D, Ferrai C, Maira M, Yoshikawa K, Mansouri A, Valtorta F, Rubenstein JLR, Broccoli V (2008) Arx is a direct target of Dlx2 and thereby contributes to the tangential migration of GABAergic interneurons. J Neurosci 28(42):10674–10686. doi:10.1523/JNEUROSCI.1283-08.2008 PubMedCrossRefGoogle Scholar
  5. 5.
    Colasante G, Sessa A, Crispi S, Calogero R, Mansouri A, Collombat P, Broccoli V (2009) Arx acts as a regional key selector gene in the ventral telencephalon mainly through its transcriptional repression activity. Dev Biol 334:59–71. doi:10.1016/j.ydbio.2009.07.014 PubMedCrossRefGoogle Scholar
  6. 6.
    Colombo E, Collombat P, Colasante G, Bianchi M, Long J, Mansouri A, Rubenstein JLR, Broccoli V (2007) Inactivation of Arx, the murine ortholog of the X-linked lissencephaly with ambiguous genitalia gene, leads to severe disorganization of the ventral telencephalon with impaired neuronal migration and differentiation. J Neurosci 27(17):4786–4798. doi:10.1523/JNEUROSCI.0417-07.2007 PubMedCrossRefGoogle Scholar
  7. 7.
    Forman MS, Squier W, Dobyns WB, Golden JA (2005) Genotypically defined lissencephalies show distinct pathologies. J Neuropathol Exp Neurol 64(10):847–857PubMedCrossRefGoogle Scholar
  8. 8.
    Friocourt G, Kanatani S, Tabata H, Yozu M, Takahashi T, Antypa M, Raguenes O, Chelly J, Ferec C, Nakajima K, Parnavelas JG (2008) Cell-autonomous roles of ARX in cell proliferation and neuronal migration during corticogenesis. J Neurosci 28(22):5794–5805. doi:10.1523/JNEUROSCI.1067-08.2008 PubMedCrossRefGoogle Scholar
  9. 9.
    Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki R, Kato-Fukui Y, Kamiirisa K, Matsuo M, S-i K, Kasahara M, Yoshioka H, Ogata T, Fukuda T, Kondo I, Kato M, Dobyns WB, Yokoyama M, K-i M (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32(3):359–369. doi:10.1038/ng1009 PubMedCrossRefGoogle Scholar
  10. 10.
    Okazaki S, Ohsawa M, Kuki I, Kawawaki H, Koriyama T, Ri S, Ichiba H, Hai E, Inoue T, Nakamura H, Goto Y-I, Tomiwa K, Yamano T, Kitamura K, Itoh M (2008) Aristaless-related homeobox gene disruption leads to abnormal distribution of GABAergic interneurons in human neocortex: evidence based on a case of X-linked lissencephaly with abnormal genitalia (XLAG). Acta Neuropathol 116(4):453–462. doi:10.1007/s00401-008-0382-2 PubMedCrossRefGoogle Scholar
  11. 11.
    Lin W, Ye W, Cai L, Meng X, Ke G, Huang C, Peng Z, Yu Y, Golden JA, Tartakoff AM, Tao T (2009) The roles of multiple importins for nuclear import of murine aristaless-related homeobox protein. J Biol Chem 284(30):20428–20439. doi:10.1074/jbc.M109.004242 PubMedCrossRefGoogle Scholar
  12. 12.
    Fullenkamp AN, El-Hodiri HM (2008) The function of the Aristaless-related homeobox (Arx) gene product as a transcriptional repressor is diminished by mutations associated with X-linked mental retardation (XLMR). Biochem Biophys Res Commun 377(1):73–78. doi:10.1016/j.bbrc.2008.09.116 PubMedCrossRefGoogle Scholar
  13. 13.
    McKenzie O, Ponte I, Mangelsdorf M, Finnis M, Colasante G, Shoubridge C, Stifani S, Gécz J, Broccoli V (2007) Aristaless-related homeobox gene, the gene responsible for West syndrome and related disorders, is a Groucho/transducin-like enhancer of split dependent transcriptional repressor. Neuroscience 146(1):236–247. doi:10.1016/j.neuroscience.2007.01.038 PubMedCrossRefGoogle Scholar
  14. 14.
    Poirier K, Van Esch H, Friocourt G, Saillour Y, Bahi N, Backer S, Souil E, Castelnau-Ptakhine L, Beldjord C, Francis F, Bienvenu T, Chelly J (2004) Neuroanatomical distribution of ARX in brain and its localisation in GABAergic neurons. Brain Res Mol Brain Res 122(1):35–46. doi:10.1016/j.molbrainres.2003.11.021 PubMedCrossRefGoogle Scholar
  15. 15.
    Bienvenu T, Poirier K, Friocourt G, Bahi N, Beaumont D, Fauchereau F, Ben Jeema L, Zemni R, Vinet M-C, Francis F, Couvert P, Gomot M, Moraine C, van Bokhoven H, Kalscheuer V, Frints S, Gecz J, Ohzaki K, Chaabouni H, Fryns J-P, Desportes V, Beldjord C, Chelly J (2002) ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Hum Mol Genet 11(8):981–991PubMedCrossRefGoogle Scholar
  16. 16.
    Miura H, Yanazawa M, Kato K, Kitamura K (1997) Expression of a novel aristaless related homeobox gene ‘Arx’ in the vertebrate telencephalon, diencephalon and floor plate. Mech Dev 65(1–2):99–109PubMedCrossRefGoogle Scholar
  17. 17.
    Yoshihara Si (2005) Arx homeobox gene is essential for development of mouse olfactory system. Development 132(4):751–762. doi:10.1242/dev.01619 PubMedCrossRefGoogle Scholar
  18. 18.
    Collombat P, Mansouri A, Hecksher-Sorensen J, Serup P, Krull J, Gradwohl G, Gruss P (2003) Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 17(20):2591–2603. doi:10.1101/gad.269003 PubMedCrossRefGoogle Scholar
  19. 19.
    Fulp CT, Cho G, Marsh ED, Nasrallah IM, Labosky PA, Golden JA (2008) Identification of Arx transcriptional targets in the developing basal forebrain. Hum Mol Genet 17(23):3740–3760. doi:10.1093/hmg/ddn271 PubMedCrossRefGoogle Scholar
  20. 20.
    Seufert DW, Prescott NL, El-Hodiri HM (2005) Xenopus aristaless-related homeobox (xARX) gene product functions as both a transcriptional activator and repressor in forebrain development. Dev Dyn 232(2):313–324. doi:10.1002/dvdy.20234 PubMedCrossRefGoogle Scholar
  21. 21.
    Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D, Affolter M, Otting G, Wuthrich K (1994) Homeodomain-DNA recognition. Cell 78(2):211–223PubMedCrossRefGoogle Scholar
  22. 22.
    Klemm JD, Rould MA, Aurora R, Herr W, Pabo CO (1994) Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 77(1):21–32PubMedCrossRefGoogle Scholar
  23. 23.
    Joshi R, Passner JM, Rohs R, Jain R, Sosinsky A, Crickmore MA, Jacob V, Aggarwal AK, Honig B, Mann RS (2007) Functional specificity of a Hox protein mediated by the recognition of minor groove structure. Cell 131(3):530–543. doi:10.1016/j.cell.2007.09.024 PubMedCrossRefGoogle Scholar
  24. 24.
    Bondos SE, Tan XX, Matthews KS (2006) Physical and genetic interactions link hox function with diverse transcription factors and cell signaling proteins. Mol Cell Proteomics 5(5):824–834. doi:10.1074/mcp.M500256-MCP200 PubMedCrossRefGoogle Scholar
  25. 25.
    Luo L, Yang X, Takihara Y, Knoetgen H, Kessel M (2004) The cell-cycle regulator geminin inhibits Hox function through direct and polycomb-mediated interactions. Nature 427(6976):749–753. doi:10.1038/nature02305 PubMedCrossRefGoogle Scholar
  26. 26.
    Wang N, Kim HG, Cotta CV, Wan M, Tang Y, Klug CA, Cao X (2006) TGFbeta/BMP inhibits the bone marrow transformation capability of Hoxa9 by repressing its DNA-binding ability. EMBO J 25(7):1469–1480. doi:10.1038/sj.emboj.7601037 PubMedCrossRefGoogle Scholar
  27. 27.
    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642PubMedCrossRefGoogle Scholar
  28. 28.
    Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, Peña-Castillo L, Alleyne TM, Mnaimneh S, Botvinnik OB, Chan ET, Khalid F, Zhang W, Newburger D, Jaeger SA, Morris QD, Bulyk ML, Hughes TR (2008) Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133(7):1266–1276. doi:10.1016/j.cell.2008.05.024 PubMedCrossRefGoogle Scholar
  29. 29.
    Kato M, Dobyns WB (2005) X-linked lissencephaly with abnormal genitalia as a tangential migration disorder causing intractable epilepsy: proposal for a new term, “interneuronopathy”. J Child Neurol 20(4):392–397PubMedCrossRefGoogle Scholar
  30. 30.
    Kato M, Das S, Petras K, Kitamura K, K-i M, Abuelo DN, Barr M, Bonneau D, Brady AF, Carpenter NJ, Cipero KL, Frisone F, Fukuda T, Guerrini R, Iida E, Itoh M, Lewanda AF, Nanba Y, Oka A, Proud VK, Saugier-Veber P, Schelley SL, Selicorni A, Shaner R, Silengo M, Stewart F, Sugiyama N, Toyama J, Toutain A, Vargas AL, Yanazawa M, Zackai EH, Dobyns WB (2004) Mutations of ARX are associated with striking pleiotropy and consistent genotype–phenotype correlation. Hum Mutat 23(2):147–159. doi:10.1002/humu.10310 PubMedCrossRefGoogle Scholar
  31. 31.
    Stromme P, Mangelsdorf ME, Shaw MA, Lower KM, Lewis SM, Bruyere H, Lutcherath V, Gedeon AK, Wallace RH, Scheffer IE, Turner G, Partington M, Frints SG, Fryns JP, Sutherland GR, Mulley JC, Gecz J (2002) Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet 30(4):441–445. doi:10.1038/ng862 PubMedCrossRefGoogle Scholar
  32. 32.
    Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201. doi:10.1093/bioinformatics/bti770 PubMedCrossRefGoogle Scholar
  33. 33.
    Noyes MB, Christensen RG, Wakabayashi A, Stormo GD, Brodsky MH, Wolfe SA (2008) Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell 133(7):1277–1289PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ginam Cho
    • 1
  • MacLean P. Nasrallah
    • 2
  • Youngshin Lim
    • 3
  • Jeffrey A. Golden
    • 1
    • 3
    • 4
  1. 1.Department of Pathology and Laboratory MedicineThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Neuroscience Graduate GroupPerelman School of Medicine at the University of PennsylvaniaPennsylvaniaUSA
  3. 3.Department of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPennsylvaniaUSA
  4. 4.Abramson Research CenterPhiladelphiaUSA

Personalised recommendations