, Volume 12, Issue 3, pp 175–181

Pathological mechanisms and parent-of-origin effects in hereditary paraganglioma/pheochromocytoma (PGL/PCC)



Paragangliomas/pheochromocytomas (PGL/PCC) are tumors of the paraganglia. They can occur sporadically, as one sign in a hereditary (tumor) syndrome or as the only manifestation in hereditary PGL/PCC. To date, five forms of hereditary PGL/PCC have been described. They are inherited as autosomal dominant traits and are caused by mutations in genes required for structure and function of complex II of the respiratory chain (succinate-ubiquinone oxidoreductase, succinate dehydrogenase, SDH). Mutations in genes encoding the small subunits of SDH, i.e., SDHD and SDHC, cause PGL1 and PGL3. Mutations in the large subunit genes SDHB, SDHA (currently only one case), and in SDHAF2 cause PGL4, 5, and 2, respectively. This article gives an overview of PGL/PCC in the context of the anatomy and function of paraganglia. It describes SDH, the genes encoding SDH, and provides information on genetic mechanisms in hereditary PGL/PCC. A model is proposed to explain exclusive paternal inheritance and loss of the maternal (putatively imprinted) allele as a prerequisite for tumor formation in PGLs 1 and 2.


Hereditary paraganglioma/pheochromocytoma Maternal imprinting Tumorigenesis Cellular hypoxia SDHA SDHB SDHC SDHD SDHAF2 Succinate-ubiquinone oxidoreductase Complex II Partial imprinting 


  1. 1.
    Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74:829–898PubMedGoogle Scholar
  2. 2.
    Bryant J, Farmer J, Kessler LJ, Townsend RR, Nathanson KL (2003) Pheochromocytoma: the expanding genetic differential diagnosis. J Natl Cancer Inst 95:1196–1204PubMedCrossRefGoogle Scholar
  3. 3.
    Plouin P-F, Gimenez-Roqueplo A-P (2006) Pheochromocytomas and secreting paragangliomas. Orphanet J Rare Dis 1:49–55PubMedCrossRefGoogle Scholar
  4. 4.
    Arias-Stella J, Valcarcel J (1976) Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Hum Pathol 7:361–373PubMedCrossRefGoogle Scholar
  5. 5.
    Bravo EL, Tagle R (2003) Pheochromocytoma: state-of-the-art and future prospects. Endocr Rev 24:539–553PubMedCrossRefGoogle Scholar
  6. 6.
    Pacak K, Linehan WM, Eisenhofer G, Walther MM, Goldstein DS (2001) Recent advances in genetics, diagnosis, localization, and treatment of pheochromocytoma. Ann Intern Med 134:315–329PubMedGoogle Scholar
  7. 7.
    Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PE, Rubinstein WS, Myers EN, Richard CW 3rd, Cornelisse CJ, Devilee P, Devlin B (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851PubMedCrossRefGoogle Scholar
  8. 8.
    Baysal BE (2002) Hereditary paraganglioma targets diverse paraganglia. J Med Genet 39:617–622PubMedCrossRefGoogle Scholar
  9. 9.
    Klein RD, Lloyd RV, Young WF (2009) Hereditary paraganglioma-pheochromocytoma syndromes. GeneReviews
  10. 10.
    Taschner PE, Jansen JC, Baysal BE, Bosch A, Rosenberg EH, Brocker-Vriends AH, Der Mey AG, van Ommen GJ, Cornelisse CJ, Devilee P (2001) Nearly all hereditary paragangliomas in the Netherlands are caused by two founder mutations in the SDHD gene. Genes Chromosomes Cancer 31:274–281PubMedCrossRefGoogle Scholar
  11. 11.
    Timmers HJLM, Pacak K, Bertherat J, Lenders JWM, Duet M, Eisenhofer G, Stratakis CA, Niccoli-Sire P, Huy PTB, Burnichon N, Gimenez-Roqueplo A-P (2008) Mutations associated with succinate dehydrogenase D-related malignant paragangliomas. Clin Endocrinol 68:561–566CrossRefGoogle Scholar
  12. 12.
    Schiavi F, Boedeker CC, Bausch B, Peczkowska M, Gomez CF, Strassburg T, Pawlu C, Buchta M, Salzmann M, Hoffmann MM, Berlis A, Brink I, Cybulla M, Muresan M, Walter MA, Forrer F, Välimäki M, Kawecki A, Szutkowski Z, Schipper J, Walz MK, Pigny P, Bauters C, Willet-Brozick JE, Baysal BE, Januszewicz A, Eng C, Opocher G, Neumann HPH, European-American paraganglioma study group (2005) Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA 294:2057–2063PubMedCrossRefGoogle Scholar
  13. 13.
    Neumann HP, Pawlu C, Peczkowska M, Bausch B, McWhinney SR, Muresan M, Buchta M, Franke G, Klisch J, Bley TA, Hoegerle S, Boedeker CC, Opocher G, Schipper J, Januszewicz A, Eng C, European-American paraganglioma study group (2004) Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292:943–951PubMedCrossRefGoogle Scholar
  14. 14.
    Cascon A, Ruiz-Llorente S, Cebrian A, Telleria D, Rivero JC, Diez JJ, Lopez-Ibarra PJ, Jaunsolo MA, Benitez J, Robledo M (2002) Identification of novel SDHD mutations in patients with phaeochromocytoma and/or paraganglioma. Eur J Hum Genet 10:457–461PubMedCrossRefGoogle Scholar
  15. 15.
    Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, Sköldberg F, Husebye ES, Eng C, Maher ER (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to famlial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69:49–54PubMedCrossRefGoogle Scholar
  16. 16.
    Badenhop RF, Jansen JC, Fagan PA, Lord RS, Wang ZG, Foster WJ, Schofield PR (2004) The prevalence of SDHB, SDHC, and SDHD mutations in patients with head and neck paraganglioma and association of mutations with clinical features. J Med Genet 41:e99PubMedCrossRefGoogle Scholar
  17. 17.
    Pawlu C, Bausch B, Neumann HP (2005) Mutations in the SDHB and SDHD genes. Fam Can 4:49–54CrossRefGoogle Scholar
  18. 18.
    Schimke RN, Collins DL, Stolle CA (2010) Paraganglioma, neuroblastoma, and a SDHB mutation: resolution of a 30-year-old mystery. Am J Med Genet A 152A:1531–1535PubMedGoogle Scholar
  19. 19.
    Niemann S, Müller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26:268–270PubMedCrossRefGoogle Scholar
  20. 20.
    Astuti D, Hart-Holden N, Latif F, Lalloo F, Black GC, Lim C, Moran A, Grossman AB, Hodgson SV, Freemont A, Ramsden R, Eng C, Evans DGR, Maher ER (2003) Genetic analysis of mitochondrial complex II subunits SDHD, SDHB and SDHC in paraganglioma and phaeochromocytoma susceptibility. Clin Endocrinol 59:728–733CrossRefGoogle Scholar
  21. 21.
    Bayley J-P, van Minderhout I, Weiss MM, Jansen JC, Oomen PHN, Menko FH, Pasini B, Ferrando B, Wong N, Alpert LC, Williams R, Blair E, Devilee P, Taschner PEM (2006) Mutation analysis of SDHB and SDHC: novel germline mutations in sporadic head and neck paraganglioma and familial paraganglioma and/or pheochromocytoma. BMC Med Genet 7:1PubMedCrossRefGoogle Scholar
  22. 22.
    Benn DE, Croxson MS, Tucker K, Bambach CP, Richardson AL, Delbridge L, Pullan PT, Hammond J, Marsh DJ, Robinson BG (2003) Novel succinate dehydrogenase subunit B (SDHB) mutations in familial phaeochromocytomas and paragangliomas, but an absence of somatic SDHB mutations in sporadic phaochromocytomas. Oncogene 22:1358–1364PubMedCrossRefGoogle Scholar
  23. 23.
    Gimenez-Roqueplo A-P, Favier J, Rustin P, Mourad JJ, Plouin PF, Corvol P, Rötig A, Jeunemaitre X (2001) The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am J Hum Genet 69:1186–1197PubMedCrossRefGoogle Scholar
  24. 24.
    Niemann S, Müller U, Engelhardt D, Lohse P (2003) Autosomal dominant malignant and catecholamine-producing paraganglioma caused by a splice donor sitze mutation in SDHC. Hum Genet 113:92–94PubMedGoogle Scholar
  25. 25.
    Hao H-X, Khalimonchuk O, Schraders M, Dephoure N, Bayley J-P, Kunst H, Devilee P, Cremers CWRJ, Schiffman JD, Bentz BG, Gygi SP, Winge DR, Kremer H, Rutter J (2009) SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325:1139–1142PubMedCrossRefGoogle Scholar
  26. 26.
    Bayley J-P, Kunst HPM, Cascori A, Sampietro ML, Gaal J, Korpershoek E, Hinojar-Gutierrez A, Timmers HJLM, Hoefsloot LH, Hermsen MA, Suárez C, Hussain AK, Vriends AHJT, Hes FJ, Jansen JC, Tops CM, Corssmit EP, de Knijff P, Lenders JWM, Cremers CWRJ, Devilee P, Dinjens WNM, de Krijger RR, Robledo M (2010) SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 11:366–372PubMedCrossRefGoogle Scholar
  27. 27.
    Hensen EF, van Duinen N, Jansen JC, Corssmite EPM, Topsd CMJ, Romijnc JA, Vriends A, van der Meya AGL, Cornelisse CJ, Devilee P, Bayley J-P (2011) High prevalence of founder mutations of the succinate dehydrogenase genes in the Netherlands. Clin Genet (in press)Google Scholar
  28. 28.
    Burnichon N, Brière J-J, Libé R, Vescovo L, Rivière J, Tissier F, Jouanno E, Jeunemaitre X, Bénit P, Tzagoloff A, Rustin P, Bertherat J, Favier J, Gimenez-Roqueplo A-P (2010) SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 19:3011–3020PubMedCrossRefGoogle Scholar
  29. 29.
    McLennan HR, Degli Esposti M (2000) The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 32:153–162PubMedCrossRefGoogle Scholar
  30. 30.
    Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, Léger C, Byrne B, Cecchini G, Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704PubMedCrossRefGoogle Scholar
  31. 31.
    Lee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP, Farese RV, Freeman RS, Carter BD, Kaelin WG, Schlisio S (2005) Neuronal apoptosis linked to EgIN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8:155–167PubMedCrossRefGoogle Scholar
  32. 32.
    Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85PubMedCrossRefGoogle Scholar
  33. 33.
    Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845PubMedCrossRefGoogle Scholar
  34. 34.
    Slane BG, Aykin-Burns N, Smith BJ, Kalen AL, Goswami PC, Domann FE, Spitz DR (2006) Mutation of succinate dehydrogenase subunit C results in increased O2._, oxidative stress, and genomic instability. Canc Res 66:7615–7620CrossRefGoogle Scholar
  35. 35.
    Jackson AL, Loeb LA (2001) The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 477:7–21PubMedGoogle Scholar
  36. 36.
    Cascon A, Ruiz-Llorente S, Fraga M, Leton R, Telleria D, Sastre J, Jose D, Martinez D, Diaz P, Benitez J, Esteller M, Robledo M (2004) Genetic and epigenetic profile of sporadic pheochromocytomas. J Med Genet 41:e30PubMedCrossRefGoogle Scholar
  37. 37.
    Huang KT, Dobrovic A, Fox SB (2009) No evidence for promoter region methylation of the succinate dehydrogenase and fumarate hydratase tumour suppressor genes in breast cancer. BMC Res Notes 2:194PubMedCrossRefGoogle Scholar
  38. 38.
    Hensen EF, Jordanova ES, van Minderhout IJHM, Hogendoorn PC, Taschner PE, van der Mey AG, Devilee P, Cornelisse CJ (2004) Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene 23:4076–4083PubMedCrossRefGoogle Scholar
  39. 39.
    Pigny P, Vincent A, Cardot Bauters C, Bertrand M, de Montpreville VT, Crepin M, Porchet N, Caron P (2008) Paraganglioma after maternal transmission of a succinate dehydrogenase gene mutation. J Clin Endocrinol Metab 93:1609–1615PubMedCrossRefGoogle Scholar
  40. 40.
    Lips CJM, Lentjes EGWM, Höppener JWM, van der Luijt RB, Moll FL (2006) Familial paragangliomas. Hered Cancer Clin Pract 4:169–176PubMedCrossRefGoogle Scholar
  41. 41.
    Müller U, Troidl C, Niemann S (2005) SDHC mutations in hereditary paraganglioma/pheochromocytoma. Fam Can 4:9–12CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für HumangenetikJustus-Liebig-Universität, Gießen, and bio.logis, Zentrum für Humangenetik, Frankfurt a.M.GiessenGermany

Personalised recommendations