neurogenetics

, Volume 12, Issue 2, pp 97–116 | Cite as

Investigating the genetics of visual processing, function and behaviour in zebrafish

  • Sabine L. Renninger
  • Helia B. Schonthaler
  • Stephan C. F. Neuhauss
  • Ralf Dahm
REVIEW ARTICLE

Abstract

Over the past three decades, the zebrafish has been proven to be an excellent model to investigate the genetic control of vertebrate embryonic development, and it is now also increasingly used to study behaviour and adult physiology. Moreover, mutagenesis approaches have resulted in large collections of mutants with phenotypes that resemble human pathologies, suggesting that these lines can be used to model diseases and screen drug candidates. With the recent development of new methods for gene targeting and manipulating or monitoring gene expression, the range of genetic modifications now possible in zebrafish is increasing rapidly. Combined with the classical strengths of the zebrafish as a model organism, these advances are set to substantially expand the type of biological questions that can be addressed in this species. In this review, we outline how the potential of the zebrafish can be harvested in the context of eye development and visual function. We review recent technological advances used to study the formation of the eyes and visual areas of the brain, visual processing on the cellular, subcellular and molecular level, and the genetics of visual behaviour in vertebrates.

Keywords

Zebrafish (Danio rerioEmbryonic development Genetics Eye Vision Visual processing and behaviour Transgenic techniques Ocular disease 

References

  1. 1.
    Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291(5813):293–296PubMedCrossRefGoogle Scholar
  2. 2.
    Clark DT (1981) Visual responses in the developing zebrafish (Brachydanio rerio). Universtiy of Oregon Press, EugeneGoogle Scholar
  3. 3.
    Dahm R, Geisler R (2006) Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Mar Biotechnol (NY) 8(4):329–345CrossRefGoogle Scholar
  4. 4.
    Schulte-Merker S (2002) Looking at embryos. In: Nüsslein-Volhard C, Dahm R (eds) Zebrafish—a practical approach. Oxford University Press, Oxford, pp 39–58Google Scholar
  5. 5.
    Frohnhoeffer HG (2002) Table of zebrafish mutations. In: Nüsslein-Volhard C, Dahm R (eds) Zebrafish—a practical approach. Oxford University Press, Oxford, pp 237–292Google Scholar
  6. 6.
    Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322(5904):1065–1069PubMedCrossRefGoogle Scholar
  7. 7.
    Baier H, Klostermann S, Trowe T, Karlstrom RO, Nusslein-Volhard C, Bonhoeffer F (1996) Genetic dissection of the retinotectal projection. Development 123:415–425PubMedGoogle Scholar
  8. 8.
    Karlstrom RO, Trowe T, Klostermann S, Baier H, Brand M, Crawford AD, Grunewald B, Haffter P, Hoffmann H, Meyer SU, Muller BK, Richter S, van Eeden FJ, Nusslein-Volhard C, Bonhoeffer F (1996) Zebrafish mutations affecting retinotectal axon pathfinding. Development 123:427–438PubMedGoogle Scholar
  9. 9.
    Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62PubMedCrossRefGoogle Scholar
  10. 10.
    Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310PubMedCrossRefGoogle Scholar
  11. 11.
    Easter SS Jr, Nicola GN (1996) The development of vision in the zebrafish (Danio rerio). Dev Biol 180(2):646–663PubMedCrossRefGoogle Scholar
  12. 12.
    Easter SS Jr, Nicola GN (1997) The development of eye movements in the zebrafish (Danio rerio). Dev Psychobiol 31(4):267–276PubMedCrossRefGoogle Scholar
  13. 13.
    Meyer A, Van de Peer Y (2005) From 2r to 3r: evidence for a fish-specific genome duplication (FSGD). Bioessays 27(9):937–945PubMedCrossRefGoogle Scholar
  14. 14.
    Braasch I, Brunet F, Volff JN, Schartl M (2009) Pigmentation pathway evolution after whole-genome duplication in fish. Genome Biol Evol 1:479–493PubMedCrossRefGoogle Scholar
  15. 15.
    Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin IT, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447(7145):714–719PubMedCrossRefGoogle Scholar
  16. 16.
    Sato Y, Hashiguchi Y, Nishida M (2009) Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evol Biol 9:127PubMedCrossRefGoogle Scholar
  17. 17.
    Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10(12):1890–1902PubMedCrossRefGoogle Scholar
  18. 18.
    Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545PubMedGoogle Scholar
  19. 19.
    Fleisch VC, Schonthaler HB, von Lintig J, Neuhauss SC (2008) Subfunctionalization of a retinoid-binding protein provides evidence for two parallel visual cycles in the cone-dominant zebrafish retina. J Neurosci 28(33):8208–8216PubMedCrossRefGoogle Scholar
  20. 20.
    Collery R, McLoughlin S, Vendrell V, Finnegan J, Crabb JW, Saari JC, Kennedy BN (2008) Duplication and divergence of zebrafish CRALBP genes uncovers novel role for RPE- and Müller-CRALBP in cone vision. Invest Ophthalmol Vis Sci 49(9):3812–3820PubMedCrossRefGoogle Scholar
  21. 21.
    Schmitt EA, Dowling JE (1994) Early eye morphogenesis in the zebrafish, Brachydanio rerio. J Comp Neurol 344(4):532–542PubMedCrossRefGoogle Scholar
  22. 22.
    Soules KA, Link BA (2005) Morphogenesis of the anterior segment in the zebrafish eye. BMC Dev Biol 5:12PubMedCrossRefGoogle Scholar
  23. 23.
    Dahm R, Schonthaler HB, Soehn AS, van Marle J, Vrensen GF (2007) Development and adult morphology of the eye lens in the zebrafish. Exp Eye Res 85(1):74–89PubMedCrossRefGoogle Scholar
  24. 24.
    Schmitt EA, Dowling JE (1996) Comparison of topographical patterns of ganglion and photoreceptor cell differentiation in the retina of the zebrafish, Danio rerio. J Comp Neurol 371(2):222–234PubMedCrossRefGoogle Scholar
  25. 25.
    Neumann CJ, Nuesslein-Volhard C (2000) Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 289(5487):2137–2139PubMedCrossRefGoogle Scholar
  26. 26.
    Schmitt EA, Dowling JE (1999) Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J Comp Neurol 404(4):515–536PubMedCrossRefGoogle Scholar
  27. 27.
    Hu M, Easter SS (1999) Retinal neurogenesis: the formation of the initial central patch of postmitotic cells. Dev Biol 207(2):309–321PubMedCrossRefGoogle Scholar
  28. 28.
    Biehlmaier O, Neuhauss SC, Kohler K (2003) Synaptic plasticity and functionality at the cone terminal of the developing zebrafish retina. J Neurobiol 56(3):222–236PubMedCrossRefGoogle Scholar
  29. 29.
    Kimmel CB, Patterson J, Kimmel RO (1974) The development and behavioral characteristics of the startle response in the zebra fish. Dev Psychobiol 7(1):47–60PubMedCrossRefGoogle Scholar
  30. 30.
    Neuhauss SC, Biehlmaier O, Seeliger MW, Das T, Kohler K, Harris WA, Baier H (1999) Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J Neurosci 19(19):8603–8615PubMedGoogle Scholar
  31. 31.
    Orger MB, Smear MC, Anstis SM, Baier H (2000) Perception of Fourier and non-Fourier motion by larval zebrafish. Nat Neurosci 3(11):1128–1133PubMedCrossRefGoogle Scholar
  32. 32.
    Branchek T (1984) The development of photoreceptors in the zebrafish, Brachydanio rerio: II. Function. J Comp Neurol 224(1):116–122PubMedCrossRefGoogle Scholar
  33. 33.
    Bilotta J, Saszik S, Sutherland SE (2001) Rod contributions to the electroretinogram of the dark-adapted developing zebrafish. Dev Dyn 222(4):564–570PubMedCrossRefGoogle Scholar
  34. 34.
    Saszik S, Bilotta J, Givin CM (1999) ERG assessment of zebrafish retinal development. Vis Neurosci 16(5):881–888PubMedCrossRefGoogle Scholar
  35. 35.
    Burrill JD, Easter SS Jr (1994) Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio). J Comp Neurol 346(4):583–600PubMedCrossRefGoogle Scholar
  36. 36.
    Gahtan E, Tanger P, Baier H (2005) Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J Neurosci 25(40):9294–9303PubMedCrossRefGoogle Scholar
  37. 37.
    Marcus RC, Delaney CL, Easter SS Jr (1999) Neurogenesis in the visual system of embryonic and adult zebrafish (Danio rerio). Off Vis Neurosci 16(3):417–424CrossRefGoogle Scholar
  38. 38.
    Hitchcock PF, Raymond PA (2004) The teleost retina as a model for developmental and regeneration biology. Zebrafish 1(3):257–271PubMedCrossRefGoogle Scholar
  39. 39.
    Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ (2006) Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol 6:36PubMedCrossRefGoogle Scholar
  40. 40.
    Vihtelic TS, Soverly JE, Kassen SC, Hyde DR (2006) Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish. Exp Eye Res 82(4):558–575PubMedCrossRefGoogle Scholar
  41. 41.
    Fimbel SM, Montgomery JE, Burket CT, Hyde DR (2007) Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. J Neurosci 27(7):1712–1724PubMedCrossRefGoogle Scholar
  42. 42.
    Fausett BV, Goldman D (2006) A role for alpha1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. J Neurosci 26(23):6303–6313PubMedCrossRefGoogle Scholar
  43. 43.
    Yurco P, Cameron DA (2005) Responses of Müller glia to retinal injury in adult zebrafish. Vis Res 45(8):991–1002PubMedCrossRefGoogle Scholar
  44. 44.
    Bernardos RL, Barthel LK, Meyers JR, Raymond PA (2007) Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J Neurosci 27(26):7028–7040PubMedCrossRefGoogle Scholar
  45. 45.
    Cameron DA, Gentile KL, Middleton FA, Yurco P (2005) Gene expression profiles of intact and regenerating zebrafish retina. Mol Vis 11:775–791PubMedGoogle Scholar
  46. 46.
    Fausett BV, Gumerson JD, Goldman D (2008) The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration. J Neurosci 28(5):1109–1117PubMedCrossRefGoogle Scholar
  47. 47.
    Kassen SC, Ramanan V, Montgomery JE, TB C, Liu CG, Vihtelic TS, Hyde DR (2007) Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafish. Dev Neurobiol 67(8):1009–1031PubMedCrossRefGoogle Scholar
  48. 48.
    Qin Z, Barthel LK, Raymond PA (2009) Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish. Proc Natl Acad Sci USA 106(23):9310–9315PubMedCrossRefGoogle Scholar
  49. 49.
    Wehman AM, Staub W, Meyers JR, Raymond PA, Baier H (2005) Genetic dissection of the zebrafish retinal stem-cell compartment. Dev Biol 281(1):53–65PubMedCrossRefGoogle Scholar
  50. 50.
    Greiling TM, Houck SA, Clark JI (2009) The zebrafish lens proteome during development and aging. Mol Vis 15:2313–2325PubMedGoogle Scholar
  51. 51.
    Greiling TM, Aose M, Clark JI (2010) Cell fate and differentiation of the developing ocular lens. Invest Ophthalmol Vis Sci 51(3):1540–1546PubMedCrossRefGoogle Scholar
  52. 52.
    Greiling TM, Clark JI (2009) Early lens development in the zebrafish: a three-dimensional time-lapse analysis. Dev Dyn 238(9):2254–2265PubMedCrossRefGoogle Scholar
  53. 53.
    Fan L, Moon J, Crodian J, Collodi P (2006) Homologous recombination in zebrafish ES cells. Transgenic Res 15(1):21–30PubMedCrossRefGoogle Scholar
  54. 54.
    Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46PubMedGoogle Scholar
  55. 55.
    Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36PubMedGoogle Scholar
  56. 56.
    Amsterdam A, Burgess S, Golling G, Chen W, Sun Z, Townsend K, Farrington S, Haldi M, Hopkins N (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13(20):2713–2724PubMedCrossRefGoogle Scholar
  57. 57.
    Gaiano N, Allende M, Amsterdam A, Kawakami K, Hopkins N (1996) Highly efficient germ-line transmission of proviral insertions in zebrafish. Proc Natl Acad Sci USA 93(15):7777–7782PubMedCrossRefGoogle Scholar
  58. 58.
    Gaiano N, Amsterdam A, Kawakami K, Allende M, Becker T, Hopkins N (1996) Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature 383(6603):829–832PubMedCrossRefGoogle Scholar
  59. 59.
    Amsterdam A, Hopkins N (2006) Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet 22(9):473–478PubMedCrossRefGoogle Scholar
  60. 60.
    Brockerhoff SE, Dowling JE, Hurley JB (1998) Zebrafish retinal mutants. Vis Res 38(10):1335–1339PubMedCrossRefGoogle Scholar
  61. 61.
    Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci USA 92(23):10545–10549PubMedCrossRefGoogle Scholar
  62. 62.
    Muto A, Orger MB, Wehman AM, Smear MC, Kay JN, Page-McCaw PS, Gahtan E, Xiao T, Nevin LM, Gosse NJ, Staub W, Finger-Baier K, Baier H (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1(5):e66PubMedCrossRefGoogle Scholar
  63. 63.
    Orger MB, Baier H (2005) Channeling of red and green cone inputs to the zebrafish optomotor response. Vis Neurosci 22(3):275–281PubMedCrossRefGoogle Scholar
  64. 64.
    Fleisch VC, Neuhauss SC (2006) Visual behavior in zebrafish. Zebrafish 3(2):191–201PubMedCrossRefGoogle Scholar
  65. 65.
    Orger MB, Gahtan E, Muto A, Page-McCaw P, Smear MC, Baier H (2004) Behavioral screening assays in zebrafish. Meth Cell Biol 77:53–68CrossRefGoogle Scholar
  66. 66.
    Emran F, Rihel J, Dowling JE (2008) A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp (20) pii:293Google Scholar
  67. 67.
    Fadool JM, Brockerhoff SE, Hyatt GA, Dowling JE (1997) Mutations affecting eye morphology in the developing zebrafish (Danio rerio). Dev Genet 20(3):288–295PubMedCrossRefGoogle Scholar
  68. 68.
    Gross JM, Perkins BD, Amsterdam A, Egana A, Darland T, Matsui JI, Sciascia S, Hopkins N, Dowling JE (2005) Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 170(1):245–261PubMedCrossRefGoogle Scholar
  69. 69.
    Roeser T, Baier H (2003) Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum. J Neurosci 23(9):3726–3734PubMedGoogle Scholar
  70. 70.
    Xiao T, Roeser T, Staub W, Baier H (2005) A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection. Development 132(13):2955–2967PubMedCrossRefGoogle Scholar
  71. 71.
    Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA 101(35):12792–12797PubMedCrossRefGoogle Scholar
  72. 72.
    Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E, Chen W, Burgess S, Haldi M, Artzt K, Farrington S, Lin SY, Nissen RM, Hopkins N (2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31(2):135–140PubMedCrossRefGoogle Scholar
  73. 73.
    Wang D, Jao LE, Zheng N, Dolan K, Ivey J, Zonies S, Wu X, Wu K, Yang H, Meng Q, Zhu Z, Zhang B, Lin S, Burgess SM (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proc Natl Acad Sci USA 104(30):12428–12433PubMedCrossRefGoogle Scholar
  74. 74.
    Maddison LA, Lu J, Victoroff T, Scott E, Baier H, Chen W (2009) A gain-of-function screen in zebrafish identifies a guanylate cyclase with a role in neuronal degeneration. Mol Genet Genomics 281(5):551–563PubMedCrossRefGoogle Scholar
  75. 75.
    Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7(1):133–144PubMedCrossRefGoogle Scholar
  76. 76.
    Nagayoshi S, Hayashi E, Abe G, Osato N, Asakawa K, Urasaki A, Horikawa K, Ikeo K, Takeda H, Kawakami K (2008) Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: Tcf7 and synembryn-like. Development 135(1):159–169PubMedCrossRefGoogle Scholar
  77. 77.
    Sivasubbu S, Balciunas D, Davidson AE, Pickart MA, Hermanson SB, Wangensteen KJ, Wolbrink DC, Ekker SC (2006) Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mech Dev 123(7):513–529PubMedCrossRefGoogle Scholar
  78. 78.
    Balciunas D, Davidson AE, Sivasubbu S, Hermanson SB, Welle Z, Ekker SC (2004) Enhancer trapping in zebrafish using the sleeping beauty transposon. BMC Genomics 5(1):62PubMedCrossRefGoogle Scholar
  79. 79.
    Ellingsen S, Laplante MA, Konig M, Kikuta H, Furmanek T, Hoivik EA, Becker TS (2005) Large-scale enhancer detection in the zebrafish genome. Development 132(17):3799–3811PubMedCrossRefGoogle Scholar
  80. 80.
    Parinov S, Kondrichin I, Korzh V, Emelyanov A (2004) Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 231(2):449–459PubMedCrossRefGoogle Scholar
  81. 81.
    Jao LE, Maddison L, Chen W, Burgess SM (2008) Using retroviruses as a mutagenesis tool to explore the zebrafish genome. Brief Funct Genomic Proteomic 7(6):427–443PubMedCrossRefGoogle Scholar
  82. 82.
    Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC (2009) A primer for morpholino use in zebrafish. Zebrafish 6(1):69–77PubMedCrossRefGoogle Scholar
  83. 83.
    Schonthaler HB, Lampert JM, von Lintig J, Schwarz H, Geisler R, Neuhauss SC (2005) A mutation in the silver gene leads to defects in melanosome biogenesis and alterations in the visual system in the zebrafish mutant fading vision. Dev Biol 284(2):421–436PubMedCrossRefGoogle Scholar
  84. 84.
    Rinner O, Makhankov YV, Biehlmaier O, Neuhauss SC (2005) Knockdown of cone-specific kinase GRK7 in larval zebrafish leads to impaired cone response recovery and delayed dark adaptation. Neuron 47(2):231–242PubMedCrossRefGoogle Scholar
  85. 85.
    McNulty CL, Peres JN, Bardine N, van den Akker WM, Durston AJ (2005) Knockdown of the complete Hox paralogous group 1 leads to dramatic hindbrain and neural crest defects. Development 132(12):2861–2871PubMedCrossRefGoogle Scholar
  86. 86.
    Russek-Blum N, Nabel-Rosen H, Levkowitz G (2009) High resolution fate map of the zebrafish diencephalon. Dev Dyn 238(7):1827–1835PubMedCrossRefGoogle Scholar
  87. 87.
    England SJ, Blanchard GB, Mahadevan L, Adams RJ (2006) A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia. Development 133(23):4613–4617PubMedCrossRefGoogle Scholar
  88. 88.
    Kozlowski DJ, Murakami T, Ho RK, Weinberg ES (1997) Regional cell movement and tissue patterning in the zebrafish embryo revealed by fate mapping with caged fluorescein. Biochem Cell Biol 75(5):551–562PubMedCrossRefGoogle Scholar
  89. 89.
    Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23(8):967–973PubMedCrossRefGoogle Scholar
  90. 90.
    Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702–708PubMedCrossRefGoogle Scholar
  91. 91.
    Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26(6):695–701PubMedCrossRefGoogle Scholar
  92. 92.
    Ekker SC (2008) Zinc finger-based knockout punches for zebrafish genes. Zebrafish 5(2):121–123PubMedCrossRefGoogle Scholar
  93. 93.
    Foley JE, Maeder ML, Pearlberg J, Joung JK, Peterson RT, Yeh JR (2009) Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat Protoc 4(12):1855–1867PubMedCrossRefGoogle Scholar
  94. 94.
    Foley JE, Yeh JR, Maeder ML, Reyon D, Sander JD, Peterson RT, Joung JK (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS ONE 4(2):e4348PubMedCrossRefGoogle Scholar
  95. 95.
    Grabher C, Wittbrodt J (2008) Recent advances in meganuclease- and transposon-mediated transgenesis of medaka and zebrafish. Meth Mol Biol 461:521–539CrossRefGoogle Scholar
  96. 96.
    Hendricks M, Jesuthasan S (2007) Electroporation-based methods for in vivo, whole mount and primary culture analysis of zebrafish brain development. Neural Dev 2:6PubMedCrossRefGoogle Scholar
  97. 97.
    Cerda GA, Thomas JE, Allende ML, Karlstrom RO, Palma V (2006) Electroporation of DNA, RNA, and morpholinos into zebrafish embryos. Methods 39(3):207–211PubMedCrossRefGoogle Scholar
  98. 98.
    Amsterdam A, Becker TS (2005) Transgenes as screening tools to probe and manipulate the zebrafish genome. Dev Dyn 234(2):255–268PubMedCrossRefGoogle Scholar
  99. 99.
    Ivics Z, Kaufman CD, Zayed H, Miskey C, Walisko O, Izsvak Z (2004) The sleeping beauty transposable element: evolution, regulation and genetic applications. Curr Issues Mol Biol 6(1):43–55PubMedGoogle Scholar
  100. 100.
    Kawakami K (2005) Transposon tools and methods in zebrafish. Dev Dyn 234(2):244–254PubMedCrossRefGoogle Scholar
  101. 101.
    Asakawa K, Kawakami K (2008) Targeted gene expression by the Gal4-UAS system in zebrafish. Dev Growth Differ 50(6):391–399PubMedCrossRefGoogle Scholar
  102. 102.
    Baier H, Scott EK (2009) Genetic and optical targeting of neural circuits and behavior—zebrafish in the spotlight. Curr Opin Neurobiol 19(5):553–560PubMedCrossRefGoogle Scholar
  103. 103.
    Halpern ME, Rhee J, Goll MG, Akitake CM, Parsons M, Leach SD (2008) Gal4/UAS transgenic tools and their application to zebrafish. Zebrafish 5(2):97–110PubMedCrossRefGoogle Scholar
  104. 104.
    Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T, Chi NC, Asakawa K, Kawakami K, Baier H (2007) Targeting neural circuitry in zebrafish using Gal4 enhancer trapping. Nat Meth 4(4):323–326Google Scholar
  105. 105.
    Gehrig J, Reischl M, Kalmar E, Ferg M, Hadzhiev Y, Zaucker A, Song C, Schindler S, Liebel U, Muller F (2009) Automated high-throughput mapping of promoter–enhancer interactions in zebrafish embryos. Nat Meth 6(12):911–916CrossRefGoogle Scholar
  106. 106.
    Picker A, Cavodeassi F, Machate A, Bernauer S, Hans S, Abe G, Kawakami K, Wilson SW, Brand M (2009) Dynamic coupling of pattern formation and morphogenesis in the developing vertebrate retina. PLoS Biol 7(10):e1000214PubMedCrossRefGoogle Scholar
  107. 107.
    Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA 105(4):1255–1260PubMedCrossRefGoogle Scholar
  108. 108.
    Ogura E, Okuda Y, Kondoh H, Kamachi Y (2009) Adaptation of Gal4 activators for Gal4 enhancer trapping in zebrafish. Dev Dyn 238(3):641–655PubMedCrossRefGoogle Scholar
  109. 109.
    Davison JM, Akitake CM, Goll MG, Rhee JM, Gosse N, Baier H, Halpern ME, Leach SD, Parsons MJ (2007) Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol 304(2):811–824PubMedCrossRefGoogle Scholar
  110. 110.
    Kikuta H, Fredman D, Rinkwitz S, Lenhard B, Becker TS (2007) Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks—a fundamental feature of vertebrate genomes. Genome Biol 8(Suppl 1):S4PubMedCrossRefGoogle Scholar
  111. 111.
    Kondrychyn I, Garcia-Lecea M, Emelyanov A, Parinov S, Korzh V (2009) Genome-wide analysis of Tol2 transposon reintegration in zebrafish. BMC Genomics 10:418PubMedCrossRefGoogle Scholar
  112. 112.
    Distel M, Wullimann MF, Koster RW (2009) Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc Natl Acad Sci USA 106(32):13365–13370PubMedCrossRefGoogle Scholar
  113. 113.
    Esengil H, Chang V, Mich JK, Chen JK (2007) Small-molecule regulation of zebrafish gene expression. Nat Chem Biol 3(3):154–155PubMedCrossRefGoogle Scholar
  114. 114.
    Sato T, Hamaoka T, Aizawa H, Hosoya T, Okamoto H (2007) Genetic single-cell mosaic analysis implicates ephrinB2 reverse signaling in projections from the posterior tectum to the hindbrain in zebrafish. J Neurosci 27(20):5271–5279PubMedCrossRefGoogle Scholar
  115. 115.
    Emelyanov A, Parinov S (2008) Mifepristone-inducible LexPR system to drive and control gene expression in transgenic zebrafish. Dev Biol 320(1):113–121PubMedCrossRefGoogle Scholar
  116. 116.
    Hamilton DL, Abremski K (1984) Site-specific recombination by the bacteriophage P1 lox-Cre system Cre-mediated synapsis of two lox sites. J Mol Biol 178(2):481–486PubMedCrossRefGoogle Scholar
  117. 117.
    Thummel R, Burket CT, Brewer JL, Sarras MP Jr, Li L, Perry M, McDermott JP, Sauer B, Hyde DR, Godwin AR (2005) Cre-mediated site-specific recombination in zebrafish embryos. Dev Dyn 233(4):1366–1377PubMedCrossRefGoogle Scholar
  118. 118.
    Hans S, Freudenreich D, Geffarth M, Kaslin J, Machate A, Brand M (2011) Generation of a non-leaky heat shock-inducible Cre line for conditional Cre/lox strategies in zebrafish. Dev Dyn 240:108–115PubMedCrossRefGoogle Scholar
  119. 119.
    Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-Er(T) and Cre-Er(T2) recombinases. Nucleic Acids Res 27(22):4324–4327PubMedCrossRefGoogle Scholar
  120. 120.
    Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 93(20):10887–10890PubMedCrossRefGoogle Scholar
  121. 121.
    Hans S, Kaslin J, Freudenreich D, Brand M (2009) Temporally-controlled site-specific recombination in zebrafish. PLoS ONE 4(2):e4640PubMedCrossRefGoogle Scholar
  122. 122.
    Boniface EJ, Lu J, Victoroff T, Zhu M, Chen W (2009) FlEX-based transgenic reporter lines for visualization of Cre and Flp activity in live zebrafish. Genesis 47(7):484–491PubMedCrossRefGoogle Scholar
  123. 123.
    Mumm JS, Williams PR, Godinho L, Koerber A, Pittman AJ, Roeser T, Chien CB, Baier H, Wong RO (2006) In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron 52(4):609–621PubMedCrossRefGoogle Scholar
  124. 124.
    Godinho L, Williams PR, Claassen Y, Provost E, Leach SD, Kamermans M, Wong RO (2007) Nonapical symmetric divisions underlie horizontal cell layer formation in the developing retina in vivo. Neuron 56(4):597–603PubMedCrossRefGoogle Scholar
  125. 125.
    Meyer MP, Smith SJ (2006) Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J Neurosci 26(13):3604–3614PubMedCrossRefGoogle Scholar
  126. 126.
    Niell CM, Meyer MP, Smith SJ (2004) In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci 7(3):254–260PubMedCrossRefGoogle Scholar
  127. 127.
    Xiao T, Baier H (2007) Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen dragnet. Nat Neurosci 10(12):1529–1537PubMedCrossRefGoogle Scholar
  128. 128.
    Scott EK, Baier H (2009) The cellular architecture of the larval zebrafish tectum, as revealed by Gal4 enhancer trap lines. Front Neural Circ 3:13Google Scholar
  129. 129.
    Sato T, Takahoko M, Okamoto H (2006) Huc:Kaede, a useful tool to label neural morphologies in networks in vivo. Genesis 44(3):136–142PubMedCrossRefGoogle Scholar
  130. 130.
    Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99(20):12651–12656PubMedCrossRefGoogle Scholar
  131. 131.
    Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24(4):461–465PubMedCrossRefGoogle Scholar
  132. 132.
    Williams PR, Suzuki SC, Yoshimatsu T, Lawrence OT, Waldron SJ, Parsons MJ, Nonet ML, Wong RO (2010) In vivo development of outer retinal synapses in the absence of glial contact. J Neurosci 30(36):11951–11961PubMedCrossRefGoogle Scholar
  133. 133.
    Montgomery JE, Parsons MJ, Hyde DR (2009) A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors. J Comp Neurol 518(6):800–814CrossRefGoogle Scholar
  134. 134.
    Zhao XF, Ellingsen S, Fjose A (2009) Labelling and targeted ablation of specific bipolar cell types in the zebrafish retina. BMC Neurosci 10:107PubMedCrossRefGoogle Scholar
  135. 135.
    Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY (2007) Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236(4):1025–1035PubMedCrossRefGoogle Scholar
  136. 136.
    Sherpa T, Fimbel SM, Mallory DE, Maaswinkel H, Spritzer SD, Sand JA, Li L, Hyde DR, Stenkamp DL (2008) Ganglion cell regeneration following whole-retina destruction in zebrafish. Dev Neurobiol 68(2):166–181PubMedCrossRefGoogle Scholar
  137. 137.
    Provost E, Rhee J, Leach SD (2007) Viral 2A peptides allow expression of multiple proteins from a single orf in transgenic zebrafish embryos. Genesis 45(10):625–629PubMedCrossRefGoogle Scholar
  138. 138.
    Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57(5):634–660PubMedCrossRefGoogle Scholar
  139. 139.
    Scott EK (2009) The Gal4/UAS toolbox in zebrafish: new approaches for defining behavioral circuits. J Neurochem 110(2):441–456PubMedCrossRefGoogle Scholar
  140. 140.
    Hua JY, Smear MC, Baier H, Smith SJ (2005) Regulation of axon growth in vivo by activity-based competition. Nature 434(7036):1022–1026PubMedCrossRefGoogle Scholar
  141. 141.
    Wyart C, Del Bene F, Warp E, Scott EK, Trauner D, Baier H, Isacoff EY (2009) Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461(7262):407–410PubMedCrossRefGoogle Scholar
  142. 142.
    Ben Fredj N, Hammond S, Otsuna H, Chien CB, Burrone J, Meyer MP (2010) Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection. J Neurosci 30(32):10939–10951PubMedCrossRefGoogle Scholar
  143. 143.
    Volgraf M, Gorostiza P, Numano R, Kramer RH, Isacoff EY, Trauner D (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2(1):47–52PubMedCrossRefGoogle Scholar
  144. 144.
    Szobota S, Gorostiza P, Del Bene F, Wyart C, Fortin DL, Kolstad KD, Tulyathan O, Volgraf M, Numano R, Aaron HL, Scott EK, Kramer RH, Flannery J, Baier H, Trauner D, Isacoff EY (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54(4):535–545PubMedCrossRefGoogle Scholar
  145. 145.
    Gradinaru V, Thompson KR, Deisseroth K (2008) ENpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36(1–4):129–139PubMedCrossRefGoogle Scholar
  146. 146.
    Zhao S, Cunha C, Zhang F, Liu Q, Gloss B, Deisseroth K, Augustine GJ, Feng G (2008) Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol 36(1–4):141–154PubMedCrossRefGoogle Scholar
  147. 147.
    Arrenberg AB, Del Bene F, Baier H (2009) Optical control of zebrafish behavior with halorhodopsin. Proc Natl Acad Sci USA 106(42):17968–17973PubMedCrossRefGoogle Scholar
  148. 148.
    Schoonheim PJ, Arrenberg AB, Del Bene F, Baier H (2010) Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish. J Neurosci 30(20):7111–7120PubMedCrossRefGoogle Scholar
  149. 149.
    Baker BJ, Mutoh H, Dimitrov D, Akemann W, Perron A, Iwamoto Y, Jin L, Cohen LB, Isacoff EY, Pieribone VA, Hughes T, Knopfel T (2008) Genetically encoded fluorescent sensors of membrane potential. Brain Cell Biol 36(1–4):53–67PubMedCrossRefGoogle Scholar
  150. 150.
    Miyawaki A (2005) Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48(2):189–199PubMedCrossRefGoogle Scholar
  151. 151.
    Yuste R, Miller RB, Holthoff K, Zhang S, Miesenbock G (2000) Synapto-phluorins: chimeras between pH-sensitive mutants of green fluorescent protein and synaptic vesicle membrane proteins as reporters of neurotransmitter release. Meth Enzymol 327:522–546PubMedCrossRefGoogle Scholar
  152. 152.
    Fetcho JR, Bhatt DH (2004) Genes and photons: new avenues into the neuronal basis of behavior. Curr Opin Neurobiol 14(6):707–714PubMedCrossRefGoogle Scholar
  153. 153.
    Naumann EA, Kampff AR, Prober DA, Schier AF, Engert F (2010) Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci 13(4):513–520PubMedCrossRefGoogle Scholar
  154. 154.
    Niell CM, Smith SJ (2005) Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Neuron 45(6):941–951PubMedCrossRefGoogle Scholar
  155. 155.
    Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hubener M, Griesbeck O (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Meth 5(9):805–811CrossRefGoogle Scholar
  156. 156.
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887PubMedCrossRefGoogle Scholar
  157. 157.
    Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19(2):137–141PubMedCrossRefGoogle Scholar
  158. 158.
    Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Meth 6(12):875–881CrossRefGoogle Scholar
  159. 159.
    Kuner T, Augustine GJ (2000) A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27(3):447–459PubMedCrossRefGoogle Scholar
  160. 160.
    Higashijima S, Masino MA, Mandel G, Fetcho JR (2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 90(6):3986–3997PubMedCrossRefGoogle Scholar
  161. 161.
    Samardzija M, Neuhauss SCF, Joly S, Kurz-Levin M, Grimm C (2010) Zebrafish vision—structure and function of the zebrafish visual system. Animal models of retinal diseases. Humana, New YorkGoogle Scholar
  162. 162.
    Stearns G, Evangelista M, Fadool JM, Brockerhoff SE (2007) A mutation in the cone-specific pde6 gene causes rapid cone photoreceptor degeneration in zebrafish. J Neurosci 27(50):13866–13874PubMedCrossRefGoogle Scholar
  163. 163.
    Nishiwaki Y, Komori A, Sagara H, Suzuki E, Manabe T, Hosoya T, Nojima Y, Wada H, Tanaka H, Okamoto H, Masai I (2008) Mutation of cGMP phosphodiesterase 6alpha′-subunit gene causes progressive degeneration of cone photoreceptors in zebrafish. Mech Dev 125(11–12):932–946PubMedCrossRefGoogle Scholar
  164. 164.
    Krock BL, Perkins BD (2008) The intraflagellar transport protein IFT57 is required for cilia maintenance and regulates IFT-particle-kinesin-II dissociation in vertebrate photoreceptors. J Cell Sci 121(Pt 11):1907–1915PubMedCrossRefGoogle Scholar
  165. 165.
    Tsujikawa M, Malicki J (2004) Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 42(5):703–716PubMedCrossRefGoogle Scholar
  166. 166.
    Krock BL, Bilotta J, Perkins BD (2007) Noncell-autonomous photoreceptor degeneration in a zebrafish model of choroideremia. Proc Natl Acad Sci USA 104(11):4600–4605PubMedCrossRefGoogle Scholar
  167. 167.
    Schonthaler HB, Fleisch VC, Biehlmaier O, Makhankov Y, Rinner O, Bahadori R, Geisler R, Schwarz H, Neuhauss SC, Dahm R (2008) The zebrafish mutant lbk/vam6 resembles human multisystemic disorders caused by aberrant trafficking of endosomal vesicles. Development 135(2):387–399PubMedCrossRefGoogle Scholar
  168. 168.
    Nuckels RJ, Ng A, Darland T, Gross JM (2009) The vacuolar-ATPase complex regulates retinoblast proliferation and survival, photoreceptor morphogenesis, and pigmentation in the zebrafish eye. Invest Ophthalmol Vis Sci 50(2):893–905PubMedCrossRefGoogle Scholar
  169. 169.
    van Rooijen E, Voest EE, Logister I, Bussmann J, Korving J, van Eeden FJ, Giles RH, Schulte-Merker S (2010) Von Hippel–Lindau tumor suppressor mutants faithfully model pathological hypoxia-driven angiogenesis and vascular retinopathies in zebrafish. Dis Model Mech 3(5–6):343–353PubMedCrossRefGoogle Scholar
  170. 170.
    Cao Z, Jensen LD, Rouhi P, Hosaka K, Lanne T, Steffensen JF, Wahlberg E, Cao Y (2010) Hypoxia-induced retinopathy model in adult zebrafish. Nat Protoc 5(12):1903–1910PubMedCrossRefGoogle Scholar
  171. 171.
    Rick JM, Horschke I, Neuhauss SC (2000) Optokinetic behavior is reversed in achiasmatic mutant zebrafish larvae. Curr Biol 10(10):595–598PubMedCrossRefGoogle Scholar
  172. 172.
    Huang YY, Rinner O, Hedinger P, Liu SC, Neuhauss SC (2006) Oculomotor instabilities in zebrafish mutant belladonna: a behavioral model for congenital nystagmus caused by axonal misrouting. J Neurosci 26(39):9873–9880PubMedCrossRefGoogle Scholar
  173. 173.
    Dahm R, Geisler R, Nüsslein-Volhard C (2005) Zebrafish (Danio rerio) genome and genetics. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine, 2nd edn. Wiley-VCH, Weinheim, pp 593–626Google Scholar
  174. 174.
    Liu WY, Wang Y, Qin Y, Wang YP, Zhu ZY (2007) Site-directed gene integration in transgenic zebrafish mediated by Cre recombinase using a combination of mutant lox sites. Mar Biotechnol NY 9(4):420–428PubMedCrossRefGoogle Scholar
  175. 175.
    Rieger S, Kulkarni RP, Darcy D, Fraser SE, Koster RW (2005) Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev Dyn 234(3):670–681PubMedCrossRefGoogle Scholar
  176. 176.
    Koster RW, Fraser SE (2001) Tracing transgene expression in living zebrafish embryos. Dev Biol 233(2):329–346PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sabine L. Renninger
    • 1
  • Helia B. Schonthaler
    • 2
  • Stephan C. F. Neuhauss
    • 1
  • Ralf Dahm
    • 2
    • 3
  1. 1.Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
  2. 2.Spanish National Cancer Research Centre (CNIO)MadridSpain
  3. 3.Department of BiologyUniversity of PadovaPaduaItaly

Personalised recommendations