, Volume 11, Issue 1, pp 81–89 | Cite as

Disruption of CNTNAP2 and additional structural genome changes in a boy with speech delay and autism spectrum disorder

  • Martin PootEmail author
  • Vera Beyer
  • Ira Schwaab
  • Natalja Damatova
  • Ruben van’t Slot
  • Jo Prothero
  • Sue E. Holder
  • Thomas Haaf


Patients with autism spectrum disorder (ASD) frequently harbour chromosome rearrangements and segmental aneuploidies, which allow us to identify candidate genes. In a boy with mild facial dysmorphisms, speech delay and ASD, we reconstructed by karyotyping, FISH and SNP array-based segmental aneuploidy profiling a highly complex chromosomal rearrangement involving at least three breaks in chromosome 1 and seven breaks in chromosome 7. Chromosome banding revealed an inversion of region 7q32.1–7q35 on the derivative chromosome 7. FISH with region-specific BACs mapped both inversion breakpoints and revealed additional breaks and structural changes in the CNTNAP2 gene. Two gene segments were transposed and inserted into the 1q31.2 region, while the CNTNAP2 segment between the two transposed parts as well as intron 13 to the 5-UTR were retained on the der(7). SNP array analysis revealed an additional de novo deletion encompassing the distal part of intron1 and exon 2 of CNTNAP2, which contains FOXP2 binding sites. Second, we found another de novo deletion on chromosome 1q41, containing 15 annotated genes, including KCTD3 and USH2A. Disruptions of the CNTNAP2 gene have been associated with ASD and with Gilles de la Tourette syndrome (GTS). Comparison of disruptions of CNTNAP2 in patients with GTS and ASD suggests that large proximal disruptions result in either GTS or ASD, while relatively small distal disruptions may be phenotypically neutral. For full-blown ASD to develop, a proximal disruption of CNTNAP2 may have to occur concomitantly with additional genome mutations such as hemizygous deletions of the KCTD3 and USH2A genes.


Autism Speech delay Insertion translocation CNTNAP2 gene KCTD3 gene USH2A gene 



We gratefully acknowledge the kind cooperation of patient and his parents and their giving consent to publish these data. We are also indebted to Dr. S. W. Scherer (Hospital for Sick Children, Toronto, ON, Canada) for helpful discussions. This work was supported by grants from the Netherlands Foundation for Brain Research (grant no. 2008(1).34 to M. Poot) and the German Research Foundation (grant no. HA1374/7-2 to T. Haaf).


  1. 1.
    Harel S, Greenstein Y, Kramer U, Yifat R, Samuel E, Nevo Y, Leitner Y, Kutai M, Fattal A, Shinnar S (1996) Clinical characteristics of children referred to a child development center for evaluation of speech, language, and communication disorders. Pediatr Neurol 15:305–311CrossRefPubMedGoogle Scholar
  2. 2.
    Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP (2001) A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519–523CrossRefPubMedGoogle Scholar
  3. 3.
    Lichtenbelt KD, Hochstenbach R, van Dam WM, Eleveld MJ, Poot M, Beemer FA (2005) Supernumerary ring chromosome 7 mosaicism: case report, investigation of the gene content, and delineation of the phenotype. Am J Med Genet A 132A:93–100CrossRefPubMedGoogle Scholar
  4. 4.
    Ropers HH, Hamel BC (2005) X-linked mental retardation. Nat Rev Genet 6:46–57CrossRefPubMedGoogle Scholar
  5. 5.
    Verkerk AJ, Mathews CA, Joosse M, Eussen BH, Heutink P, Oostra BA, Tourette Syndrome Association International Consortium for Genetics (2003) CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder. Genomics 82:1–9CrossRefPubMedGoogle Scholar
  6. 6.
    Belloso JM, Bache I, Guitart M, Caballin MR, Halgren C, Kirchhoff M, Ropers HH, Tommerup N, Tümer Z (2007) Disruption of the CNTNAP2 gene in a t(7;15) translocation family without symptoms of Gilles de la Tourette syndrome. Eur J Hum Genet 15:711–713CrossRefPubMedGoogle Scholar
  7. 7.
    Poot M, v. ‘t Slot R, Leupert R, Beyer V, Passarge E, Haaf T (2009) Three de novo losses and one insertion within a pericentric inversion of chromosome 6 in a patient with complete absence of expressive speech and reduced pain perception. Eur J Med Genet 52:27–30CrossRefPubMedGoogle Scholar
  8. 8.
    Wirth J, Nothwang HG, van der Maarel S, Menzel C, Borck G, Lopez-Pajares I, Brøndum-Nielsen K, Tommerup N, Bugge M, Ropers HH, Haaf T (1999) Systematic characterization of disease associated balanced chromosome rearrangements by FISH: cytogenetically and genetically anchored YACs identify microdeletions and candidate regions for mental retardation genes. J Med Genet 36:271–278PubMedGoogle Scholar
  9. 9.
    Yue Y, Grossmann B, Holder SE, Haaf T (2005) De novo t(7;10)(q33;q23) translocation and closely juxtaposed microdeletion in a patient with macrocephaly and developmental delay. Hum Genet 117:1–8CrossRefPubMedGoogle Scholar
  10. 10.
    Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, Alarcón M, Oliver PL, Davies KE, Geschwind DH, Monaco AP, Fisher SE (2008) A functional genetic link between distinct developmental language disorders. N Engl J Med 359:2337–2345CrossRefPubMedGoogle Scholar
  11. 11.
    Alarcon M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, Sebat J, Wigler M, Martin CL, Ledbetter DH, Nelson SF, Cantor RM, Geschwind DH (2008) Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 82:150–159CrossRefPubMedGoogle Scholar
  12. 12.
    Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y, Thiruvahindrapduram B, Fiebig A, Schreiber S, Friedman J, Ketelaars CE, Vos YJ, Ficicioglu C, Kirkpatrick S, Nicolson R, Sloman L, Summers A, Gibbons CA, Teebi A, Chitayat D, Weksberg R, Thompson A, Vardy C, Crosbie V, Luscombe S, Baatjes R, Zwaigenbaum L, Roberts W, Fernandez B, Szatmari P, Scherer SW (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82:477–488CrossRefPubMedGoogle Scholar
  13. 13.
    Luciani P, Deledda C, Rosati F, Benvenuti S, Cellai I, Dichiara F, Morello M, Vannelli GB, Danza G, Serio M, Peri A (2008) Seladin-1 is a fundamental mediator of the neuroprotective effects of estrogen in human neuroblast long-term cell cultures. Endocrinology 149:4256–4266CrossRefPubMedGoogle Scholar
  14. 14.
    Pedretti A, Bocci E, Maggi R, Vistoli G (2008) Homology modelling of human DHCR24 (seladin-1) and analysis of its binding properties through molecular docking and dynamics simulations. Steroids 73:708–719CrossRefPubMedGoogle Scholar
  15. 15.
    Roux C, Wolf C, Mulliez N, Gaoua W, Cormier V, Chevy F, Citadelle D (2000) Role of cholesterol in embryonic development. Am J Clin Nutr 71:1270S–1279SPubMedGoogle Scholar
  16. 16.
    Yu H, Patel SB (2005) Recent insights into the Smith-Lemli-Opitz syndrome. Clin Genet 68:383–391CrossRefPubMedGoogle Scholar
  17. 17.
    Hastings PJ, Ira G, Lupski JR (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5(1):e1000327CrossRefPubMedGoogle Scholar
  18. 18.
    Nelms BE, Maser RS, MacKay JF, Lagally MG, Petrini JH (1998) In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280:590–592CrossRefPubMedGoogle Scholar
  19. 19.
    Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE (2000) Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290:138–141CrossRefPubMedGoogle Scholar
  20. 20.
    Rossi E, Verri AP, Patricelli MG, Destefani V, Ricca I, Vetro A, Ciccone R, Giorda R, Toniolo D, Maraschio P, Zuffardi O (2008) A 12 Mb deletion at 7q33-q35 associated with autism spectrum disorders and primary amenorrhea. Eur J Med Genet 51:631–638CrossRefPubMedGoogle Scholar
  21. 21.
    Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, Parod JM, Stephan DA, Morton DH (2006) Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 354:1370–1377CrossRefPubMedGoogle Scholar
  22. 22.
    Bakkaloglu B, O'Roak BJ, Louvi A, Gupta AR, Abelson JF, Morgan TM, Chawarska K, Klin A, Ercan-Sencicek AG, Stillman AA, Tanriover G, Abrahams BS, Duvall JA, Robbins EM, Geschwind DH, Biederer T, Gunel M, Lifton RP, State MW (2008) Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet 82:165–173CrossRefPubMedGoogle Scholar
  23. 23.
    Kalscheuer VM, FitzPatrick D, Tommerup N, Bugge M, Niebuhr E, Neumann LM, Tzschach A, Shoichet SA, Menzel C, Erdogan F, Arkesteijn G, Ropers HH, Ullmann R (2007) Mutations in autism susceptibility candidate 2 (AUTS2) in patients with mental retardation. Hum Genet 121:501–509CrossRefPubMedGoogle Scholar
  24. 24.
    Henrichsen CN, Vinckenbosch N, Zöllner S, Chaignat E, Pradervand S, Schütz F, Ruedi M, Kaessmann H, Reymond A (2009) Segmental copy number variation shapes tissue transcriptomes. Nat Genet 41:424–429CrossRefPubMedGoogle Scholar
  25. 25.
    Cook EH Jr, Scherer SW (2008) Copy-number variations associated with neuropsychiatric conditions. Nature 455:919–923CrossRefPubMedGoogle Scholar
  26. 26.
    Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Martin Poot
    • 1
    Email author
  • Vera Beyer
    • 2
  • Ira Schwaab
    • 2
  • Natalja Damatova
    • 2
  • Ruben van’t Slot
    • 1
  • Jo Prothero
    • 3
  • Sue E. Holder
    • 3
  • Thomas Haaf
    • 2
  1. 1.Department of Medical GeneticsUniversity Medical Centre UtrechtUtrechtThe Netherlands
  2. 2.Institute of Human GeneticsJohannes Gutenberg University MainzMainzGermany
  3. 3.North West Thames Regional Genetics ServiceNWLH NHS TrustHarrowUK

Personalised recommendations