neurogenetics

, Volume 10, Issue 4, pp 313–318 | Cite as

Recent origin and spread of a common Welsh MAPT splice mutation causing frontotemporal lobar degeneration

  • Roberto Colombo
  • Daniela Tavian
  • Matthew C. Baker
  • Anna M. T. Richardson
  • Julie S. Snowden
  • David Neary
  • David M. A. Mann
  • Stuart M. Pickering-Brown
Original Article

Abstract

IVS10+16C>T is the most prevalent mutation in the microtubule-associated protein tau gene (MAPT) causing frontotemporal lobar degeneration (FTLD) in populations of British descent. A highly conserved 17q21 haplotype was identified in IVS10+16C>T chromosomes from North Wales, Greater Manchester and the London areas of the UK, Australia, and the USA, suggesting the occurrence of a common founder effect. To test this hypothesis, the age of the mutation was estimated by parametric and Bayesian analysis of linkage disequilibrium's decay over generations, and the results were compared with historical and geographical data on FTLD families. The inferred age (23 generations; 95% confidence interval, 9–74 generations) dates the most recent common ancestor of IVS10+16C>T chromosomes before Welsh people started emigrating to the USA and Australia, where they introduced the mutation. The identification of a cohort of FTLD families with a homogeneous genetic background within and around the MAPT locus will further the investigation of the different clinical and pathological presentations of patients with identical MAPT mutations.

Keywords

Frontotemporal lobar degeneration Microtubule-associated tau protein IVS10+16C>T MAPT mutation Linkage disequilibrium Founder effect Age of mutation 

References

  1. 1.
    Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159. doi:10.1146/annurev.neuro.24.1.1121 CrossRefPubMedGoogle Scholar
  2. 2.
    Williams DR (2006) Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau. Intern Med J 36:652–660. doi:10.1111/j.1445-5994.2006.01153.x CrossRefPubMedGoogle Scholar
  3. 3.
    Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D'Amato CJ, Gilman S (1997) Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Ann Neurol 41:706–715. doi:10.1002/ana.410410606 CrossRefPubMedGoogle Scholar
  4. 4.
    Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Petra Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JBJ, Peter RPR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705. doi:10.1038/31508 CrossRefPubMedGoogle Scholar
  5. 5.
    Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L, Andreadis A, Wiederholt WC, Raskind M, Schellenberg GD (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43:815–826. doi:10.1002/ana.410430617 CrossRefPubMedGoogle Scholar
  6. 6.
    Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 95:7737–7741. doi:10.1073/pnas.95.13.7737 CrossRefPubMedGoogle Scholar
  7. 7.
    Mann DM, South PW, Snowden JS, Neary D (1993) Dementia of frontal lobe type: neuropathology and immunohistochemistry. J Neurol Neurosurg Psychiatry 56:605–614. doi:10.1136/jnnp. 56.6.605 CrossRefPubMedGoogle Scholar
  8. 8.
    Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554PubMedGoogle Scholar
  9. 9.
    Pickering-Brown SM, Richardson AM, Snowden JS, McDonagh AM, Burns A, Braude W, Baker M, Liu WK, Yen SH, Hardy J, Hutton M, Davies Y, Allsop D, Craufurd D, Neary D, Mann DM (2002) Inherited frontotemporal dementia in nine British families associated with intronic mutations in the tau gene. Brain 125(Pt 4):732–751. doi:10.1093/brain/awf069 CrossRefPubMedGoogle Scholar
  10. 10.
    Saito Y, Geyer A, Sasaki R, Kuzuhara S, Nanba E, Miyasaka T, Suzuki K, Murayama S (2002) Early-onset, rapidly progressive familial tauopathy with R406W mutation. Neurology 58:811–813PubMedGoogle Scholar
  11. 11.
    Kobayashi T, Mori H, Okuma Y, Dickson DW, Cookson N, Tsuboi Y, Motoi Y, Tanaka R, Miyashita N, Anno M, Narabayashi H, Mizuno Y (2002) Contrasting genotypes of the tau gene in two phenotypically distinct patients with P301L mutation of frontotemporal dementia and parkinsonism linked to chromosome 17. J Neurol 249:669–675. doi:10.1007/s00415-002-0687-3 CrossRefPubMedGoogle Scholar
  12. 12.
    Stevens M, van Duijn CM, Kamphorst W, de Knijff P, Heutink P, van Gool WA, Scheltens P, Ravid R, Oostra BA, Niermeijer MF, van Swieten JC (1998) Familial aggregation in frontotemporal dementia. Neurology 50:1541–1545PubMedGoogle Scholar
  13. 13.
    Sahara N, Maeda S, Takashima A (2008) Tau oligomerization: a role for tau aggregation intermediates linked to neurodegeneration. Curr Alzheimer Res 5:591–598. doi:10.2174/156720508786898442 CrossRefPubMedGoogle Scholar
  14. 14.
    Alonso AC, Li B, Grundke-Iqbal I, Iqbal K (2008) Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies. Curr Alzheimer Res 5:375–384. doi:10.2174/156720508785132307 CrossRefPubMedGoogle Scholar
  15. 15.
    Barten DM, Albright CF (2008) Therapeutic strategies for Alzheimer's disease. Mol Neurobiol 37:171–186. doi:10.1007/s12035-008-8031-2 CrossRefPubMedGoogle Scholar
  16. 16.
    Sigurdsson EM (2008) Immunotherapy targeting pathological tau protein in Alzheimer's disease and related tauopathies. J Alzheimers Dis 15:157–168PubMedGoogle Scholar
  17. 17.
    Rizzu P, Van Swieten JC, Joosse M, Hasegawa M, Stevens M, Tibben A, Niermeijer MF, Hillebrand M, Ravid R, Oostra BA, Goedert M, van Duijn CM, Heutink P (1999) High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am J Hum Genet 64:414–421. doi:10.1086/302256 CrossRefPubMedGoogle Scholar
  18. 18.
    Rademakers R, Cruts M, van Broeckhoven C (2004) The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum Mutat 24:277–295. doi:10.1002/humu.20086 CrossRefPubMedGoogle Scholar
  19. 19.
    Stanford PM, Brooks WS, Teber ET, Hallupp M, McLean C, Halliday GM, Martins RN, Kwok JB, Schofield PR (2004) Frequency of tau mutations in familial and sporadic frontotemporal dementia and other tauopathies. J Neurol 251:1098–1104. doi:10.1007/s00415-004-0489-x CrossRefPubMedGoogle Scholar
  20. 20.
    Poorkaj P, Grossman M, Steinbart E, Payami H, Sadovnick A, Nochlin D, Tabira T, Trojanowski JQ, Borson S, Galasko D, Reich S, Quinn B, Schellenberg G, Bird TD (2001) Frequency of tau gene mutations in familial and sporadic cases of non-Alzheimer dementia. Arch Neurol 58:383–387. doi:10.1001/archneur.58.3.383 CrossRefPubMedGoogle Scholar
  21. 21.
    Janssen JC, Warrington EK, Morris HR, Lantos P, Brown J, Revesz T, Wood N, Khan MN, Cipolotti L, Fox NC, Rossor MN (2002) Clinical features of frontotemporal dementia due to the intronic tau 10(+16) mutation. Neurology 58:1161–1168PubMedGoogle Scholar
  22. 22.
    Lantos PL, Cairns NJ, Khan MN, King A, Revesz T, Janssen JC, Morris H, Rossor MN (2002) Neuropathologic variation in frontotemporal dementia due to the intronic tau 10(+16) mutation. Neurology 58:1169–1175PubMedGoogle Scholar
  23. 23.
    Doran M, du Plessis DG, Ghadiali EJ, Mann DMA, Pickering-Brown S, Larner AJ (2007) Familial early-onset dementia with tau intron 10 +16 mutation with clinical features similar to those of Alzheimer disease. Arch Neurol 64:1535–1539. doi:10.1001/archneur.64.10.1535 CrossRefPubMedGoogle Scholar
  24. 24.
    Grover A, Houlden H, Baker M, Adamson J, Lewis J, Prihar G, Pickering-Brown S, Duff K, Hutton M (1999) 5' splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10. J Biol Chem 274:15134–15143. doi:10.1074/jbc.274.21.15134 CrossRefPubMedGoogle Scholar
  25. 25.
    Chang E, Kim S, Yin H, Nagaraja HN, Kuret J (2008) Pathogenetic missense MAPT mutations differentially modulate tau aggregation propensity at nucleation and extension steps. J Neurochem 197:1113–1123Google Scholar
  26. 26.
    Pickering-Brown S, Baker M, Bird T, Trojanowski J, Lee V, Morris H, Rossor M, Janssen JC, Neary D, Craufurd D, Richardson A, Snowden J, Hardy J, Mann D, Hutton M (2004) Evidence of a founder effect in families with frontotemporal dementia that harbor the tau +16 splice mutation. Am J Med Genet 125B:79–82. doi:10.1002/ajmg.b.20083 CrossRefPubMedGoogle Scholar
  27. 27.
    Labuda D, Zietkiewicz LM (1997) The genetic clock and the age of the founder effect in growing populations: a lesson from French Canadians and Ashkenazim. Am J Hum Genet 61:768–771. doi:10.1016/S0002-9297(07)64341-9 CrossRefPubMedGoogle Scholar
  28. 28.
    Risch N, de Leon D, Ozelius L, Kramer P, Almasy L, Singer B, Fahn S, Breakefield X, Bressman S (1995) Genetic analysis of idiopathic torsion dystonia in Ashkenazi Jews and their recent descent from a small founder population. Nat Genet 9:152–159. doi:10.1038/ng0295-152 CrossRefPubMedGoogle Scholar
  29. 29.
    Reich DE, Goldstein DB (1999) Estimating the age of mutations using variation at linked markers. In: Goldstein GB, Schlötterer C (eds) Microsatellites: evolution and applications. Oxford University Press, Oxford, pp 129–138Google Scholar
  30. 30.
    Rannala B, Reeve JP (2001) High-resolution multipoint linkage-disequilibrium mapping in the context of a human genome sequence. Am J Hum Genet 69:159–178. doi:10.1086/321279 CrossRefPubMedGoogle Scholar
  31. 31.
    Génin E, Tullio-Pelet A, Begeot F, Lyonnet S, Abel L (2004) Estimating the age of rare disease mutations: the example of Triple-A syndrome. J Med Genet 41:445–449. doi:10.1136/jmg.2003.017962 CrossRefPubMedGoogle Scholar
  32. 32.
    Williams J (ed) (2001) Digest of Welsh historical statistics: Population, 1570–1974. UK Data Archive (Study No 4093), Colchester, EssexGoogle Scholar
  33. 33.
    Dark F (1997) A family with autosomal dominant, non-Alzheimer's presenile dementia. Aust N Z J Psychiatry 31:139–144. doi:10.3109/00048679709073812 CrossRefPubMedGoogle Scholar
  34. 34.
    Williams D (1935) Some figures relating to emigration from Wales. Bull Board Celtic Stud 7:395–415Google Scholar
  35. 35.
    Pickering-Brown SM, Rollinson S, Du Plessis D, Morrison KE, Varma A, Richardson AM, Neary D, Snowden JS, Mann DM (2008) Frequency and clinical characteristics of progranulin mutation carriers in the Manchester frontotemporal lobar degeneration cohort: comparison with patients with MAPT and no known mutations. Brain 131:721–731. doi:10.1093/brain/awm331 CrossRefPubMedGoogle Scholar
  36. 36.
    Garrard P, Carroll E (2007) Familial early-onset dementia with tau intron 10 + 16 mutation with clinical features similar to those of Alzheimer disease. Arch Neurol 64:1535–1539. doi:10.1001/archneur.64.10.1535 CrossRefGoogle Scholar
  37. 37.
    Goedert M, Spillantini MG, Crowther RA, Chen SG, Parchi P, Tabaton M, Lanska DJ, Markesbery WR, Wilhelmsen KC, Dickson DW, Petersen RB, Gambetti P (1999) Tau gene mutation in familial progressive subcortical gliosis. Nat Med 5:454–457. doi:10.1038/7454 CrossRefPubMedGoogle Scholar
  38. 38.
    Bengtsson BO, Thomson G (1981) Measuring the strength of associations between HLA antigens and diseases. Tissue Antigens 18:356–363. doi:10.1111/j.1399-0039.1981.tb01404.x CrossRefPubMedGoogle Scholar
  39. 39.
    Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247PubMedGoogle Scholar

Electronic-Database Information

  1. 40.
    Online Mendelian Inheritance in Man (OMIM). http://www.ncbi.nlm.nih.gov/sites/entrez (for FTDP-17 [MIM 600274] and microtubule-associated protein tau [MIM 157140])
  2. 41.
    Alzheimer Disease & Frontotemporal Dementia Mutation Database. http://www.molgen.ua.ac.be/Admutations
  3. 42.
    DMLE+ Linkage Disequilibrium Mapping Software. http://dmle.org/
  4. 43.
    Centre d'Études du Polymorphisme Humain. http://www.cephb.fr/ceph-genethon-map.html
  5. 44.
    UCSC Genome Bioinformatics. http://genome.ucsc.edu/

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Roberto Colombo
    • 1
    • 2
  • Daniela Tavian
    • 1
    • 2
  • Matthew C. Baker
    • 3
  • Anna M. T. Richardson
    • 4
    • 5
  • Julie S. Snowden
    • 4
    • 5
  • David Neary
    • 4
    • 5
  • David M. A. Mann
    • 4
    • 5
  • Stuart M. Pickering-Brown
    • 4
  1. 1.Laboratory of Human Molecular Biology and GeneticsCatholic University of the Sacred HeartMilanItaly
  2. 2.National Institute of Molecular Genetics (INGM)MilanItaly
  3. 3.Department of NeuroscienceMayo Clinic College of MedicineJacksonvilleUSA
  4. 4.Clinical Neuroscience Research Group, Faculty of Medical and Human SciencesUniversity of ManchesterManchesterUK
  5. 5.Greater Manchester Neurosciences CentreHope HospitalSalfordUK

Personalised recommendations