Advertisement

neurogenetics

, Volume 10, Issue 1, pp 13–17 | Cite as

Alzheimer’s disease risk variants show association with cerebrospinal fluid amyloid beta

  • John S. K. Kauwe
  • Jun Wang
  • Kevin Mayo
  • John C. Morris
  • Anne M. Fagan
  • David M. Holtzman
  • Alison M. Goate
Original Article

Abstract

The use of quantitative endophenotypes in genetic studies may provide greater power, allowing for the use of powerful statistical methods and a biological model for the effects of the disease-associated genetic variation. Cerebrospinal fluid (CSF) amyloid beta (Aβ) levels are promising endophenotypes for late-onset Alzheimer’s disease (LOAD) and show correlation with LOAD status and Aβ deposition. In this study, we investigated 29 single nucleotide polymorphisms (SNPs) positive in AlzGene (http://www.alzgene.org) meta-analyses, for association with CSF Aβ levels in 313 individuals. This study design makes it possible to replicate reported LOAD risk alleles while contributing novel information about the mechanism by which they might affect that risk. Alleles in ACE, APOE, BDNF, DAPK1, and TF are significantly associated with CSF Aβ levels. In vitro analysis of the TF SNP showed a change in secreted Aβ consistent with the CSF phenotype and known Alzheimer’s disease variants, demonstrating the utility of this approach in identifying SNPs that influence risk for disease via an Aβ-related mechanism.

Keywords

Amyloid beta Alzheimer’s disease Genetics Association Transferrin 

Notes

Acknowledgments

This work was supported by the National Institute on Aging (P50-AG05681, J.C.M.; P01-AG03991, J.C.M.; P01-AG026276, J.C.M.; R01-AG16208, A.M.G.; P30-N5057105, D.M.H.; 1-TL1-RR024995-01 and 1-KL2-RR024994-01, Washington University) the Barnes Jewish Foundation and the American Health Assistance Foundation (A.M.G.). This publication was made possible in part by grant number UL1 RR024992 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and NIH Roadmap for Medical Research. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH. J.S.K.K. is a Hope Center Fellow supported by the Hope Center for Neurological Disorders and National Institutes of Health Grant T32 MH14677. The authors gratefully acknowledge the individuals who participated in this study. The authors also acknowledge the contributions of the Genetics, Clinical, Psychometric, and Biostatistics Cores of the Washington University Alzheimer’s Disease Research Center.

References

  1. 1.
    Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368. doi: 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X CrossRefPubMedGoogle Scholar
  2. 2.
    Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH et al (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58:397–405. doi: 10.1001/archneur.58.3.39711 PubMedGoogle Scholar
  3. 3.
    Hulette CM, Welsh-Bohmer KA, Murray MG, Saunders AM, Mash DC, McIntyre LM (1998) Neuropathological and neuropsychological changes in “normal” aging: evidence for preclinical Alzheimer disease in cognitively normal individuals. J Neuropathol Exp Neurol 57:1168–1174. doi: 10.1097/00005072-199812000-00009 CrossRefPubMedGoogle Scholar
  4. 4.
    Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC et al (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66:1837–1844. doi: 10.1212/01.wnl.0000219668.47116.e6 CrossRefPubMedGoogle Scholar
  5. 5.
    Kauwe JS, Jacquart S, Chakraverty S, Wang J, Mayo K, Fagan AM et al (2007) Extreme cerebrospinal fluid amyloid beta levels identify family with late-onset Alzheimer’s disease presenilin 1 mutation. Ann Neurol 61:446–453. doi: 10.1002/ana.21099 CrossRefPubMedGoogle Scholar
  6. 6.
    Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–519. doi: 10.1002/ana.20730 CrossRefPubMedGoogle Scholar
  7. 7.
    Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM (2007) Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64:343–349. doi: 10.1001/archneur.64.3.noc60123 CrossRefPubMedGoogle Scholar
  8. 8.
    Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23. doi: 10.1038/ng1934 CrossRefPubMedGoogle Scholar
  9. 9.
    Ding C, Cantor CR (2003) A high-throughput gene expression analysis technique using competitive PCR and matrix-assisted laser desorption ionization time-of-flight MS. Proc Natl Acad Sci U S A 100:3059–3064. doi: 10.1073/pnas.0630494100 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Holtzman DM, Fagan AM, Mackey B, Tenkova T, Sartorius L, Paul SM et al (2000) Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer’s disease model. Ann Neurol 47:739–747. doi: 10.1002/1531-8249(200006)47:6<739::AID-ANA6>3.0.CO;2-8 CrossRefPubMedGoogle Scholar
  11. 11.
    Kim J, Onstead L, Randle S, Price R, Smithson L, Zwizinski C et al (2007) Abeta40 inhibits amyloid deposition in vivo. J Neurosci 27:627–633. doi: 10.1523/JNEUROSCI.4849-06.2007 CrossRefPubMedGoogle Scholar
  12. 12.
    Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N et al (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870. doi: 10.1038/nm0896-864 CrossRefPubMedGoogle Scholar
  13. 13.
    Dudbridge F (2003) Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 25:115–121. doi: 10.1002/gepi.10252 CrossRefPubMedGoogle Scholar
  14. 14.
    Wang J, Beher D, Nyborg AC, Shearman MS, Golde TE, Goate A (2006) C-terminal PAL motif of presenilin and presenilin homologues required for normal active site conformation. J Neurochem 96:218–227CrossRefPubMedGoogle Scholar
  15. 15.
    Keavney B, McKenzie CA, Connell JM, Julier C, Ratcliffe PJ, Sobel E et al (1998) Measured haplotype analysis of the angiotensin-I converting enzyme gene. Hum Mol Genet 7:1745–1751. doi: 10.1093/hmg/7.11.1745 CrossRefPubMedGoogle Scholar
  16. 16.
    Kehoe PG, Katzov H, Feuk L, Bennet AM, Johansson B, Wiman B et al (2003) Haplotypes extending across ACE are associated with Alzheimer’s disease. Hum Mol Genet 12:859–867. doi: 10.1093/hmg/ddg094 CrossRefPubMedGoogle Scholar
  17. 17.
    Prince JA, Zetterberg H, Andreasen N, Marcusson J, Blennow K (2004) APOE epsilon4 allele is associated with reduced cerebrospinal fluid levels of Abeta42. Neurology 62:2116–2118CrossRefPubMedGoogle Scholar
  18. 18.
    Belbin O, Dunn JL, Ling Y, Morgan L, Chappell S, Beaumont H et al (2007) Regulatory region single nucleotide polymorphisms of the apolipoprotein E gene and the rate of cognitive decline in Alzheimer’s disease. Hum Mol Genet 16:2199–2208. doi: 10.1093/hmg/ddm171 CrossRefPubMedGoogle Scholar
  19. 19.
    Hu J, Igarashi A, Kamata M, Nakagawa H (2001) Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J Biol Chem 276:47863–47868PubMedGoogle Scholar
  20. 20.
    Li Y, Grupe A, Rowland C, Nowotny P, Kauwe JS, Smemo S et al (2006) DAPK1 variants are associated with Alzheimer’s disease and allele-specific expression. Hum Mol Genet 15:2560–2568. doi: 10.1093/hmg/ddl178 CrossRefPubMedGoogle Scholar
  21. 21.
    Morse LJ, Payton SM, Cuny GD, Rogers JT (2004) FDA-preapproved drugs targeted to the translational regulation and processing of the amyloid precursor protein. J Mol Neurosci 24:129–136. doi: 10.1385/JMN:24:1:129 CrossRefPubMedGoogle Scholar
  22. 22.
    Reznichenko L, Amit T, Zheng H, Avramovich-Tirosh Y, Youdim MB, Weinreb O et al (2006) Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (−)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer’s disease. J Neurochem 97:527–536. doi: 10.1111/j.1471-4159.2006.03770.x CrossRefPubMedGoogle Scholar
  23. 23.
    Schjeide B-MM, McQueen MB, Mullin K, DiVito J, Hogan MF, Parkinson M, Hooli B, Lange C, Blacker D, Tanzi RE, Bertram L (2009) Assessment of Alzheimer’s disease case–control associations using family-based methods. Neurogenetics. doi: 10.1007/s10048-008-0151-3

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • John S. K. Kauwe
    • 1
  • Jun Wang
    • 1
  • Kevin Mayo
    • 1
  • John C. Morris
    • 2
    • 3
    • 6
    • 7
  • Anne M. Fagan
    • 2
    • 3
    • 4
  • David M. Holtzman
    • 2
    • 3
    • 4
    • 5
  • Alison M. Goate
    • 1
    • 2
    • 3
    • 4
    • 7
  1. 1.Department of PsychiatryB8134 Washington University School of MedicineSt. LouisUSA
  2. 2.Department of NeurologyWashington University School of MedicineSt. LouisUSA
  3. 3.Alzheimer’s Disease Research CenterWashington University School of MedicineSt. LouisUSA
  4. 4.Hope Center for Neurological DisordersWashington University School of MedicineSt. LouisUSA
  5. 5.Department of Molecular Biology and PharmacologyWashington University School of MedicineSt. LouisUSA
  6. 6.Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUSA
  7. 7.Department of GeneticsWashington University School of MedicineSt. LouisUSA

Personalised recommendations