, Volume 9, Issue 1, pp 33–40 | Cite as

Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis

  • Cinzia Gellera
  • Claudia Colombrita
  • Nicola Ticozzi
  • Barbara Castellotti
  • Cinzia Bragato
  • Antonia Ratti
  • Franco Taroni
  • Vincenzo SilaniEmail author
Original Article


Angiogenin (ANG) gene, coding for an angiogenic factor up-regulated by hypoxia and expressed in ventral horn motor neurons, is a novel candidate for the pathogenesis of amyotrophic lateral sclerosis (ALS). ALS is a fatal neurodegenerative disease characterized by the selective loss of cortical and spinal motor neurons. Missense mutations in ANG gene have been identified in two ALS populations from Northern Europe and North America, both in familial (FALS) and sporadic (SALS) patients, but they do not seem to be frequent in the Italian population. We performed a mutational screening in a large cohort of 737 Italian ALS patients, including 605 SALS and 132 FALS cases. We identified seven different mutations, five of which are novel, in nine patients (six SALS and three FALS), but not in 515 healthy controls. Three mutations are located in the signal peptide region, three in the coding sequence, and one in the 3′ untranslated region. In our ALS population, the observed mutational frequency of ANG gene accounts for about 1.2%, with an overrepresentation of FALS (2.3%) compared to SALS (1%) cases. We also found the previously described I46V substitution in six patients and four controls, suggesting that this mutation may represent a benign variant, at least in the Italian population. Our results provide further evidence of a tight link between angiogenesis and ALS pathogenesis and suggest that mutations in ANG gene are associated with an increased risk to develop ALS.


Motor neuron disease Amyotrophic lateral sclerosis Angiogenin Case-control studies Risk factors 



We wish to thank the patients, their families, and referring clinicians who participated in this study. This work was financially supported by the Italian Ministry of Health (Malattie Neurodegenerative, ex Art.56, n. 533F/N 1, 2004).


  1. 1.
    Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7(9):710–723PubMedCrossRefGoogle Scholar
  2. 2.
    Lambrechts D et al (2003) VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet 34(4):383–394PubMedCrossRefGoogle Scholar
  3. 3.
    Van Vught PW et al (2005) Lack of association between VEGF polymorphisms and ALS in a Dutch population. Neurology 65(10):1643–1645PubMedCrossRefGoogle Scholar
  4. 4.
    Chen W et al (2006) Lack of association of VEGF promoter polymorphisms with sporadic ALS. Neurology 67(3):508–510PubMedCrossRefGoogle Scholar
  5. 5.
    Del Bo R et al (2006) Absence of angiogenic genes modification in Italian ALS patients. Neurobiol Aging DOI  10.1016/j.neurobiolaging.2006.10.008
  6. 6.
    Oosthuyse B et al (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28(2):131–138PubMedCrossRefGoogle Scholar
  7. 7.
    Zheng C et al (2004) Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann Neurol 56(4):564–567PubMedCrossRefGoogle Scholar
  8. 8.
    Storkebaum E et al (2005) Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8(1):85–92PubMedCrossRefGoogle Scholar
  9. 9.
    Azzouz M et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429(6990):413–417PubMedCrossRefGoogle Scholar
  10. 10.
    Tello-Montoliu A, Patel JV, Lip GY (2006) Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost 4(9):1864–1874PubMedCrossRefGoogle Scholar
  11. 11.
    Greenway MJ (2004) A novel candidate region for ALS on chromosome 14q11.2. Neurology 63(10):1936–1938PubMedGoogle Scholar
  12. 12.
    Greenway MJ (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38(4):411–413PubMedCrossRefGoogle Scholar
  13. 13.
    Cronin S et al (2006) Elevated serum angiogenin levels in ALS. Neurology 67(10):1833–1836PubMedCrossRefGoogle Scholar
  14. 14.
    Wu D et al (2007) Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol DOI  10.1002/ana.21221
  15. 15.
    Crabtree B (2007) Characterization of human angiogenin variants implicated in amyotrophic lateral sclerosis. Biochemistry 46:11810–11818PubMedCrossRefGoogle Scholar
  16. 16.
    Corrado L et al (2007) Variations in the coding and regulatory sequences of the angiogenin (ANG) gene are not associated to ALS (amyotrophic lateral sclerosis) in the Italian population. J Neurol Sci 258(1–2):123–127PubMedCrossRefGoogle Scholar
  17. 17.
    Conforti FL et al (2007) A novel Angiogenin gene mutation in a sporadic patient with amyotrophic lateral sclerosis from southern Italy. Neuromuscul Disord DOI  10.1016/j.nmd.2007.07.003
  18. 18.
    Miller RG et al (1999) Consensus guidelines for the design and implementation of clinical trials in ALS. World Federation of Neurology committee on Research. J Neurol Sci 169(1–2):2–12PubMedCrossRefGoogle Scholar
  19. 19.
    Li TM, Alberman E, Swash M (1988) Comparison of sporadic and familial disease amongst 580 cases of motor neuron disease. J Neurol Neurosurg Psychiatry 51(6):778–784PubMedCrossRefGoogle Scholar
  20. 20.
    Smith BD, Raines RT (2006) Genetic selection for critical residues in ribonucleases. J Mol Biol 362(3):459–478PubMedCrossRefGoogle Scholar
  21. 21.
    Moroianu J, Riordan JF (1994) Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc Natl Acad Sci USA 91(5):1677–1681PubMedCrossRefGoogle Scholar
  22. 22.
    Kishimoto K et al (2005) Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene 24(3):445–456PubMedCrossRefGoogle Scholar
  23. 23.
    Shapiro R, Vallee BL (1989) Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis. Biochemistry 28(18):7401–7408PubMedCrossRefGoogle Scholar
  24. 24.
    Hu G-F (1998) Neomycin inhibits angiogenin-induced angiogenesis. Proc Natl Acad Sci U.S.A. 95:9791–9795PubMedCrossRefGoogle Scholar
  25. 25.
    Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30(17):3894–3900PubMedCrossRefGoogle Scholar
  26. 26.
    Acharya KR et al (1994) Crystal structure of human angiogenin reveals the structural basis for its functional divergence from ribonuclease. Proc Natl Acad Sci USA 91(8):2915–2919PubMedCrossRefGoogle Scholar
  27. 27.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20PubMedCrossRefGoogle Scholar
  28. 28.
    Enright AJ et al (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1PubMedCrossRefGoogle Scholar
  29. 29.
    Subramanian V, Feng Y (2007) A new role for angiogenin in neurite growth and pathfinding: implications for amyotrophic lateral sclerosis. Hum Mol Genet 16(12):1445–1453PubMedCrossRefGoogle Scholar
  30. 30.
    Subramanian V, Crabtree B, Acharya KR (2007) Human angiogenin is a neuroprotective factor and Amyotrophic Lateral Sclerosis associated angiogenin variants affect neurite extension/pathfinding and survival of motor neurons. Hum Mol Genet (in press)Google Scholar
  31. 31.
    Kieran D et al (2005) The effects of angiogenin on motor neuron degeneration. Amyotroph Lateral Scler 6(Suppl 1):42–45Google Scholar
  32. 32.
    Lambrechts D et al (2006) Another angiogenic gene linked to amyotrophic lateral sclerosis. Trends Mol Med 12(8):345–347PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Cinzia Gellera
    • 1
  • Claudia Colombrita
    • 2
  • Nicola Ticozzi
    • 2
  • Barbara Castellotti
    • 1
  • Cinzia Bragato
    • 1
  • Antonia Ratti
    • 2
  • Franco Taroni
    • 1
  • Vincenzo Silani
    • 2
    Email author
  1. 1.Division of Biochemistry and GeneticsFondazione IRCCS-Instituto Neurologico Carlo BestaMilanItaly
  2. 2.Department of Neurology and Laboratory of Neuroscience, “Dino Ferrari” Center, University of Milan Medical SchoolIRCCS Istituto Auxologico ItalianoMilanItaly

Personalised recommendations