, Volume 8, Issue 4, pp 289–299 | Cite as

Frataxin gene point mutations in Italian Friedreich ataxia patients

  • Cinzia Gellera
  • Barbara Castellotti
  • Caterina Mariotti
  • Rossana Mineri
  • Viviana Seveso
  • Stefano DiDonato
  • Franco Taroni
Original Article


Friedreich ataxia (FRDA) is associated with a GAA-trinucleotide-repeat expansion in the first intron of the FXN gene (9q13–21), which encodes a 210-amino-acid protein named frataxin. More than 95% of patients are homozygous for 90–1,300 repeat expansion on both alleles. The remaining patients have been shown to be compound heterozygous for a GAA expansion on one allele and a micromutation on the other. The reduction of both frataxin messenger RNA (mRNA) and protein was found to be proportional to the size of the smaller GAA repeat allele. We report a clinical and molecular study of 12 families in which classical FRDA patients were heterozygous for a GAA expansion on one allele. Sequence analysis of the FXN gene allowed the identification of the second disease-causing mutation in each heterozygous patient, which makes this the second largest series of FRDA compound heterozygotes reported thus far. We have identified seven mutations, four of which are novel. Five patients carried missense mutations, whereas eight patients carried null (frameshift or nonsense) mutations. Quantitation of frataxin levels in lymphoblastoid cell lines derived from six compound heterozygous patients showed a statistically significant correlation of residual protein levels with the age at onset (r = 0.82, p < 0.05) or the GAA expansion (r = −0.76, p < 0.1). In the group of patients heterozygous for a null allele, a strong (r = −0.94, p < 0.01) correlation was observed between the size of GAA expansion and the age at onset, thus lending support to the hypothesis that the residual function of frataxin in patients’ cells derive exclusively from the expanded allele.


Mutation Hereditary ataxia Mitochondria Trinucleotide repeat 


  1. 1.
    Taroni F, DiDonato S (2004) Pathways to motor incoordination: the inherited ataxias. Nature Rev Neurosci 5:641–655CrossRefGoogle Scholar
  2. 2.
    Harding AE (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620CrossRefGoogle Scholar
  3. 3.
    Palau F, De Michele G, Vilchez JJ, Pandolfo M, Monros E, Cocozza S, Smeyers P, Lopez-Arlandis J, Campanella G, Di Donato S et al (1995) Early-onset ataxia with cardiomyopathy and retained tendon reflexes maps to the Friedreich’s ataxia locus on chromosome 9q. Ann Neurol 37:359–362CrossRefGoogle Scholar
  4. 4.
    Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, DiDonato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427CrossRefGoogle Scholar
  5. 5.
    Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L, Pandolfo M, Kaplan J (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709–1712CrossRefGoogle Scholar
  6. 6.
    Tan G, Napoli E, Taroni F, Cortopassi G (2003) Decreased expression of genes involved in sulfur amino acid metabolism in frataxin-deficient cells. Hum Mol Genet 12:1699–1711CrossRefGoogle Scholar
  7. 7.
    Cossee M, Schmitt M, Campuzano V, Reutenauer L, Moutou C, Mandel JL, Koenig M (1997) Evolution of the Friedreich's ataxia trinucleotide repeat expansion: founder effect and premutations. Proc Natl Acad Sci USA 94:7452–7457CrossRefGoogle Scholar
  8. 8.
    Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M (1996) Clinical and genetic abnormalities in patients with Friedreich's ataxia. N Engl J Med 335:1169–1175CrossRefGoogle Scholar
  9. 9.
    Filla A, De Michele G, Cavalcanti F, Pianese L, Monticelli A, Campanella G, Cocozza S (1996) The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet 59:554–560Google Scholar
  10. 10.
    Gellera C, Pareyson D, Castellotti B, Mazzucchelli F, Zappacosta B, Pandolfo M, Di Donato S (1997) Very late onset Friedreich’s ataxia without cardiomyopathy is associated with limited GAA expansion in the X25 gene. Neurology 49:1153–1155Google Scholar
  11. 11.
    Sharma R, De Biase I, Gomez M, Delatycki MB, Ashizawa T, Bidichandani SI (2004) Friedreich ataxia in carriers of unstable borderline GAA triplet-repeat alleles. Ann Neurol 56:898–901CrossRefGoogle Scholar
  12. 12.
    Cossee M, Durr A, Schmitt M, Dahl N, Trouillas P, Allinson P, Kostrzewa M, Nivelon-Chevallier A, Gustavson KH, Kohlschutter A, Muller U, Mandel JL, Brice A, Koenig M, Cavalcanti F, Tammaro A, De Michele G, Filla A, Cocozza S, Labuda M, Montermini L, Poirier J, Pandolfo M (1999) Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol 45:200–206CrossRefGoogle Scholar
  13. 13.
    Campuzano V, Montermini L, Lutz Y, Cova L, Hindelang C, Jiralerspong S, Trottier Y, Kish SJ, Faucheux B, Trouillas P, Authier FJ, Durr A, Mandel JL, Vescovi A, Pandolfo M, Koenig M (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6:1771–1780CrossRefGoogle Scholar
  14. 14.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215CrossRefGoogle Scholar
  15. 15.
    Tan G, Chen LS, Lonnerdal B, Gellera C, Taroni F, Cortopassi GA (2001) Frataxin expression rescues mitochondrial dysfunctions in FRDA cells. Hum Mol Genet 10:2099–2107CrossRefGoogle Scholar
  16. 16.
    Wong A, Yang J, Cavadini P, Gellera C, Lonnerdal B, Taroni F, Cortopassi GA (1999) The Friedreich’s ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet 8:425–430CrossRefGoogle Scholar
  17. 17.
    Taroni F, Verderio E, Dworzak F, Willems PJ, Cavadini P, DiDonato S (1993) Identification of a common mutation in the carnitine palmitoyltransferase II gene in familial recurrent myoglobinuria patients. Nat Genet 4:314–320CrossRefGoogle Scholar
  18. 18.
    Cavadini P, Gellera C, Patel PI, Isaya G (2000) Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum Mol Genet 9:2523–2530CrossRefGoogle Scholar
  19. 19.
    Alper G, Narayanan V (2003) Friedreich’s ataxia. Pediatr Neurol 28:335–341CrossRefGoogle Scholar
  20. 20.
    Delatycki MB, Knight M, Koenig M, Cossee M, Williamson R, Forrest SM (1999) G130V, a common FRDA point mutation, appears to have arisen from a common founder. Hum Genet 105:343–346CrossRefGoogle Scholar
  21. 21.
    Pandolfo M (1999) Molecular pathogenesis of Friedreich ataxia. Arch Neurol 56:1201–1208CrossRefGoogle Scholar
  22. 22.
    Bidichandani SI, Ashizawa T, Patel PI (1998) The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 62:111–121CrossRefGoogle Scholar
  23. 23.
    Pianese L, Turano M, Lo Casale MS, De Biase I, Giacchetti M, Monticelli A, Criscuolo C, Filla A, Cocozza S (2004) Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich ataxia patients and carriers. J Neurol Neurosurg Psychiatry 75:1061–1063CrossRefGoogle Scholar
  24. 24.
    Zhu D, Burke C, Leslie A, Nicholson GA (2002) Friedreich’s ataxia with chorea and myoclonus caused by a compound heterozygosity for a novel deletion and the trinucleotide GAA expansion. Mov Disord 17:585–589CrossRefGoogle Scholar
  25. 25.
    Zuhlke C, Laccone F, Cossee M, Kohlschutter A, Koenig M, Schwinger E (1998) Mutation of the start codon in the FRDA1 gene: linkage analysis of three pedigrees with the ATG to ATT transversion points to a unique common ancestor. Hum Genet 103:102–105CrossRefGoogle Scholar
  26. 26.
    Potter NT, Miller CA, Anderson IJ (2000) Mutation detection in an equivocal case of Friedreich’s ataxia. Pediatr Neurol 22:413–415CrossRefGoogle Scholar
  27. 27.
    Spacey SD, Szczygielski BI, Young SP, Hukin J, Selby K, Snutch TP (2004) Malaysian siblings with friedreich ataxia and chorea: a novel deletion in the frataxin gene. Can J Neurol Sci 31:383–386Google Scholar
  28. 28.
    Van Driest SL, Gakh O, Ommen SR, Isaya G, Ackerman MJ (2005) Molecular and functional characterization of a human frataxin mutation found in hypertrophic cardiomyopathy. Mol Genet Metab 85:280–285CrossRefGoogle Scholar
  29. 29.
    De Castro M, Garcia-Planells J, Monros E, Canizares J, Vazquez-Manrique R, Vilchez JJ, Urtasun M, Lucas M, Navarro G, Izquierdo G, Molto MD, Palau F (2000) Genotype and phenotype analysis of Friedreich’s ataxia compound heterozygous patients. Hum Genet 106:86–92CrossRefGoogle Scholar
  30. 30.
    McCormack ML, Guttmann RP, Schumann M, Farmer JM, Stolle CA, Campuzano V, Koenig M, Lynch DR (2000) Frataxin point mutations in two patients with Friedreich’s ataxia and unusual clinical features. J Neurol Neurosurg Psychiatry 68:661–664CrossRefGoogle Scholar
  31. 31.
    Pook MA, Al-Mahdawi SA, Thomas NH, Appleton R, Norman A, Mountford R, Chamberlain S (2000) Identification of three novel frameshift mutations in patients with Friedreich’s ataxia. J Med Genet 37:E38CrossRefGoogle Scholar
  32. 32.
    Bartolo C, Mendell JR, Prior TW (1998) Identification of a missense mutation in a Friedreich’s ataxia patient: implications for diagnosis and carrier studies. Am J Med Genet 79:396–399CrossRefGoogle Scholar
  33. 33.
    Doudney K, Pook M, Al-Mahdawi S, Carvajal J, Hillerman R, Chamberlain S (1997) A novel splice site mutation (384+1G-A) in the Friedreich’s ataxia gene. Hum Mutat 11:415Google Scholar
  34. 34.
    Bidichandani SI, Ashizawa T, Patel PI (1997) Atypical Friedreich’s ataxia caused by compound heterozygosity for a novel missense mutation and the GAA triplet-repeat expansion. Am J Hum Genet 60:1251–1256Google Scholar
  35. 35.
    Forrest SM, Knight M, Delatycki MB, Paris D, Williamson R, King J, Yeung L, Nassif N, Nicholson GA (1998) The correlation of clinical phenotype in Friedreich ataxia with the site of point mutations in the FRDA gene. Neurogenetics 1:253–257CrossRefGoogle Scholar
  36. 36.
    McCabe DJ, Wood NW, Ryan F, Hanna MG, Connolly S, Moore DP, Redmond J, Barton DE, Murphy RP (2002) Intrafamilial phenotypic variability in Friedreich ataxia associated with a G130V mutation in the FRDA gene. Arch Neurol 59:296–300CrossRefGoogle Scholar
  37. 37.
    Zühlke CH, Dalski A, Habeck M, Straube K, Hedrich K, Hoeltzenbein M, Konstanzer A, Hellenbroich Y, Schwinger E (2004) Extension of the mutation spectrum in Friedreich's ataxia: detection of an exon deletion and novel missense mutations. Eur J Hum Genet 12:979–982CrossRefGoogle Scholar
  38. 38.
    Labuda M, Poirier J, Pandolfo M (1999) A missense mutation (W155R) in an American patient with Friedreich Ataxia. Hum Mutat 13:506CrossRefGoogle Scholar
  39. 39.
    De Michele G, Filla A, Cavalcanti F, Tammaro A, Monticelli A, Pianese L, Di Salle F, Perreti A, Santoro L, Caruso G, Cocozza S (2000) Atypical Friedreich ataxia phenotype associated with a novel missense mutation in the X25 gene. Neurology 54:496–499Google Scholar
  40. 40.
    Al-Mahdawi S, Pook M, Chamberlain S (2000) A novel missense mutation (L198R) in the Friedreich's ataxia gene. Hum Mutat 16:95CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Cinzia Gellera
    • 1
  • Barbara Castellotti
    • 1
  • Caterina Mariotti
    • 1
  • Rossana Mineri
    • 1
  • Viviana Seveso
    • 1
  • Stefano DiDonato
    • 1
  • Franco Taroni
    • 1
  1. 1.UO Biochimica e GeneticaFondazione IRCCS Istituto Neurologico “Carlo Besta”MilanItaly

Personalised recommendations