Neurogenetics

, Volume 8, Issue 4, pp 257–262 | Cite as

Functional, histopathologic and natural history study of neuropathy associated with EGR2 mutations

  • Kinga Szigeti
  • Wojciech Wiszniewski
  • Gulam Mustafa Saifi
  • Diane L. Sherman
  • Norbert Sule
  • Adekunle M. Adesina
  • Pedro Mancias
  • Sozos Ch. Papasozomenos
  • Geoffrey Miller
  • Laura Keppen
  • Donna Daentl
  • Peter J. Brophy
  • James R. Lupski
Original Article

Abstract

Mutations in the EGR2 gene cause a spectrum of Charcot–Marie–Tooth disease and related inherited peripheral neuropathies. We ascertained ten consecutive patients with various EGR2 mutations, report a novel de novo mutation, and provide longitudinal clinical data to characterize the natural history of the peripheral neuropathy. We confirmed that respiratory compromise and cranial nerve dysfunction are commonly associated with EGR2 mutations and can be useful in guiding molecular diagnosis. We also contrast morphological studies in the context of the I268N homozygous recessive mutation affecting the NAB repressor binding site and the R359W dominant-negative mutation in the zinc-finger domain.

Keywords

EGR2 Myelin CMT HSMN 

References

  1. 1.
    Topilko P, Schneider-Maunoury S, Levi G et al (1994) Krox-20 controls myelination in the peripheral nervous system. Nature 371:796–799PubMedCrossRefGoogle Scholar
  2. 2.
    Le N, Nagarajan R, Wang JY et al (2005) Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc Natl Acad Sci USA 102:2596–2601PubMedCrossRefGoogle Scholar
  3. 3.
    Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6:683–690PubMedCrossRefGoogle Scholar
  4. 4.
    LeBlanc SE, Ward RM, Svaren J (2007) Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol Cell Biol 27:3521–3529PubMedCrossRefGoogle Scholar
  5. 5.
    Decker L, Desmarquet-Trin-Dinh C, Taillebourg E et al (2006) Peripheral myelin maintenance is a dynamic process requiring constant Krox20 expression. J Neurosci 26:9771–9779PubMedCrossRefGoogle Scholar
  6. 6.
    Vandenberghe N, Upadhyaya M, Gatignol A et al (2002) Frequency of mutations in the early growth response 2 gene associated with peripheral demyelinating neuropathies. J Med Genet 39:e81PubMedCrossRefGoogle Scholar
  7. 7.
    Warner LE, Mancias P, Butler IJ et al (1998) Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet 18:382–384PubMedCrossRefGoogle Scholar
  8. 8.
    Numakura C, Shirahata E, Yamashita S et al (2003) Screening of the early growth response 2 gene in Japanese patients with Charcot-Marie-Tooth disease type 1. J Neurol Sci 210:61–64PubMedCrossRefGoogle Scholar
  9. 9.
    Timmerman V, De Jonghe P, Ceuterick C et al (1999) Novel missense mutation in the early growth response 2 gene associated with Dejerine-Sottas syndrome phenotype. Neurology 52:1827–1832PubMedGoogle Scholar
  10. 10.
    Bellone E, Di Maria E, Soriani S et al (1999) A novel mutation (D305V) in the early growth response 2 gene is associated with severe Charcot–Marie–Tooth type 1 disease. Hum Mutat 14:353–354PubMedCrossRefGoogle Scholar
  11. 11.
    Mikesova E, Huhne K, Rautenstrauss B et al (2005) Novel EGR2 mutation R359Q is associated with CMT type 1 and progressive scoliosis. Neuromuscul Disord 15:764–767PubMedCrossRefGoogle Scholar
  12. 12.
    Pareyson D, Taroni F, Botti S et al (2000) Cranial nerve involvement in CMT disease type 1 due to early growth response 2 gene mutation. Neurology 54:1696–1698PubMedGoogle Scholar
  13. 13.
    Yoshihara T, Kanda F, Yamamoto M et al (2001) A novel missense mutation in the early growth response 2 gene associated with late-onset Charcot–Marie–Tooth disease type 1. J Neurol Sci 184:149–153PubMedCrossRefGoogle Scholar
  14. 14.
    Warner LE, Svaren J, Milbrandt J, Lupski JR (1999) Functional consequences of mutations in the early growth response 2 gene (EGR2) correlate with severity of human myelinopathies. Hum Mol Genet 8:1245–1251PubMedCrossRefGoogle Scholar
  15. 15.
    Svaren J, Sevetson BR, Golda T et al (1998) Novel mutants of NAB corepressors enhance activation by Egr transactivators. Embo J 17:6010–6019PubMedCrossRefGoogle Scholar
  16. 16.
    Le N, Nagarajan R, Wang JY et al (2005) Nab proteins are essential for peripheral nervous system myelination. Nat Neurosci 8:932–940PubMedGoogle Scholar
  17. 17.
    Dytrych L, Sherman DL, Gillespie CS, Brophy PJ (1998) Two PDZ domain proteins encoded by the murine periaxin gene are the result of alternative intron retention and are differentially targeted in Schwann cells. J Biol Chem 273:5794–5800PubMedCrossRefGoogle Scholar
  18. 18.
    Boerkoel CF, Takashima H, Bacino CA et al (2001) EGR2 mutation R359W causes a spectrum of Dejerine-Sottas neuropathy. Neurogenetics 3:153–157PubMedCrossRefGoogle Scholar
  19. 19.
    Mechta-Grigoriou F, Garel S, Charnay P (2000) Nab proteins mediate a negative feedback loop controlling Krox-20 activity in the developing hindbrain. Development 127:119–128PubMedGoogle Scholar
  20. 20.
    Schneider-Maunoury S, Topilko P, Seitandou T et al (1993) Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75:1199–1214PubMedCrossRefGoogle Scholar
  21. 21.
    Schneider-Maunoury S, Seitanidou T, Charnay P, Lumsden A (1997) Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. Development 124:1215–1226PubMedGoogle Scholar
  22. 22.
    Inoue K, Khajavi M, Ohyama T et al (2004) Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 36:361–369PubMedCrossRefGoogle Scholar
  23. 23.
    Szigeti K, Garcia CA, Lupski JR (2006) Charcot-Marie-Tooth disease and related hereditary polyneuropathies: molecular diagnostics determine aspects of medical management. Genet Med 8:86–92PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Kinga Szigeti
    • 1
    • 4
  • Wojciech Wiszniewski
    • 1
  • Gulam Mustafa Saifi
    • 1
  • Diane L. Sherman
    • 8
  • Norbert Sule
    • 5
  • Adekunle M. Adesina
    • 5
  • Pedro Mancias
    • 2
  • Sozos Ch. Papasozomenos
    • 3
  • Geoffrey Miller
    • 4
  • Laura Keppen
    • 6
  • Donna Daentl
    • 7
  • Peter J. Brophy
    • 8
  • James R. Lupski
    • 1
    • 9
    • 10
  1. 1.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA
  2. 2.Department of NeurologyUniversity of Texas, Health Sciences CenterHoustonUSA
  3. 3.Department of PathologyUniversity of Texas, Health Sciences CenterHoustonUSA
  4. 4.Department of NeurologyBaylor College of MedicineHoustonUSA
  5. 5.Department of PathologyBaylor College of MedicineHoustonUSA
  6. 6.Department of Pediatrics and Adolescent MedicineUniversity of South Dakota School of MedicineSioux FallsUSA
  7. 7.Shriners Hospitals for Children Northern CaliforniaSacramentoUSA
  8. 8.Centre for Neuroscience Research, Department of Veterinary Anatomy & Cell BiologyUniversity of EdinburghEdinburghUK
  9. 9.Department of PediatricsBaylor College of MedicineHoustonUSA
  10. 10.Program in Cell and Molecular BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations