Neurogenetics

, Volume 7, Issue 1, pp 21–25 | Cite as

Death of neuronal clusters contributes to variance of age at onset in Huntington’s disease

  • Branka Čajavec
  • Hanspeter Herzel
  • Samuel Bernard
Original Article

Abstract

Huntington’s disease (HD) is a fatal neurodegenerative disease caused by an expanded polyglutamine (polyQ) repeat in the protein huntingtin. Due to selective neuronal loss in the cortex and striatum, HD patients develop various movement disturbances, psychological changes, and dementia. Symptoms usually appear in individuals between 30 and 50 years of age. The principal cause of variability of age at onset (AO) is the length of the polyQ repeat. Several additional genetic factors contributing to the variance have been identified. At least 35% of the variance, however, remains unexplained. Using a stochastic model, we show that the pattern of cell death of striatal neurons might contribute up to 20% of variance of AO.

Keywords

One-hit model Stochastic process Neuron death Polyglutamine repeat Age of onset 

Abbreviations

AO

Age at onset

HD

Huntington’s disease

polyQ

Polyglutamine

References

  1. 1.
    The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRefGoogle Scholar
  2. 2.
    Duyao M et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 5:168–173CrossRefPubMedGoogle Scholar
  3. 3.
    Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, Graham RK, Hayden MR (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403CrossRefPubMedGoogle Scholar
  4. 4.
    Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, Shaw DJ (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 4:393–397CrossRefPubMedGoogle Scholar
  5. 5.
    Nahhas FA, Garbern J, Krajewski KM, Roa BB, Feldman GL (2005) Juvenile onset Huntington disease resulting from a very large maternal expansion. Am J Med Genet A 137A:328–331CrossRefPubMedGoogle Scholar
  6. 6.
    Chattopadhyay B, Baksi K, Mukhopadhyay S, Bhattacharyya NP (2005) Modulation of age at onset of Huntington disease patients by variations in TP53 and human caspase activated DNase (hCAD) genes. Neurosci Lett 374:81–86CrossRefPubMedGoogle Scholar
  7. 7.
    Rubinsztein DC, Leggo J, Chiano M, Dodge A, Norbury G, Rosser E, Craufurd D (1997) Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc Natl Acad Sci U S A 94:3872–3876CrossRefPubMedGoogle Scholar
  8. 8.
    Arning L, Kraus PH, Valentin S, Saft C, Andrich J, Epplen JT (2005) NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics 6:25–28CrossRefPubMedGoogle Scholar
  9. 9.
    Aylward EH, Sparks BF, Field KM, Yallapragada V, Shpritz BD, Rosenblatt A, Brandt J, Gourley LM, Liang K, Zhou H, Margolis RL, Ross CA (2004) Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology 63:66–72PubMedGoogle Scholar
  10. 10.
    Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EPJ (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577PubMedGoogle Scholar
  11. 11.
    Clarke G, Collins RA, Leavitt BR, Andrews DF, Hayden MR, Lumsden CJ, McInnes RR (2000) A one-hit model of cell death in inherited neuronal degenerations. Nature 406:195–199CrossRefPubMedGoogle Scholar
  12. 12.
    Perutz MF, Windle AH (2001) Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412:143–144CrossRefPubMedGoogle Scholar
  13. 13.
    Rosas HD, Goodman J, Chen YI, Jenkins BG, Kennedy DN, Makris N, Patti M, Seidman LJ, Beal MF, Koroshetz WJ (2001) Striatal volume loss in HD as measured by MRI and the influence of CAG repeat. Neurology 57:1025–1028PubMedGoogle Scholar
  14. 14.
    Augood SJ, Faull RL, Emson PC (1997) Dopamine D1 and D2 receptor gene expression in the striatum in Huntington’s disease. Ann Neurol 42:215–221CrossRefPubMedGoogle Scholar
  15. 15.
    Andrews TC, Weeks RA, Turjanski N, Gunn RN, Watkins LHA, Sahakian B, Hodges JR, Rosser AE, Wood NW, Brooks DJ (1999) Huntington’s disease progression: PET and clinical observations. Brain 122:2353–2363CrossRefPubMedGoogle Scholar
  16. 16.
    Hedreen JC, Folstein SE (1995) Early loss of neostriatal striosome neurons in Huntington’s disease. J Neuropathol Exp Neurol 54:105–120PubMedGoogle Scholar
  17. 17.
    Thieben MJ, Duggins AJ, Good CD, Gomes L, Mahant N, Richards F, McCusker E, Frackowiak RS (2002) The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 125:1815–1828CrossRefPubMedGoogle Scholar
  18. 18.
    Heinsen H, Strik M, Bauer M, Luther K, Ulmar G, Gangnus D, Jungkunz G, Eisenmenger W, Gotz M (1994) Cortical and striatal neurone number in Huntington’s disease. Acta Neuropathol (Berl) 88:320–333CrossRefGoogle Scholar
  19. 19.
    Rosenblatt A, Brinkman RR, Liang KY, Almqvist EW, Margolis RL, Huang CY, Sherr M, Franz ML, Abbott MH, Hayden MR, Ross CA (2001) Familial influence on age of onset among siblings with Huntington disease. Am J Med Genet 105:399–403CrossRefPubMedGoogle Scholar
  20. 20.
    Kieburtz K, MacDonald M, Shih C, Feigin A, Steinberg K, Bordwell K, Zimmerman C, Srinidhi J, Sotack J, Gusella J (1994) Trinucleotide repeat length and progression of illness in Huntington’s disease. J Med Genet 31:872–874PubMedCrossRefGoogle Scholar
  21. 21.
    Margolis RL, Ross CA (2003) Diagnosis of Huntington disease. Clin Chem 49:1726–1732CrossRefPubMedGoogle Scholar
  22. 22.
    Squitieri F, Sabbadini G, Mandich P, Gellera C, Di Maria E, Bellone E, Castellotti B, Nargi E, de Grazia U, Frontali M, Novelletto A (2000) Family and molecular data for a fine analysis of age at onset in Huntington disease. Am J Med Genet 95:366–373CrossRefPubMedGoogle Scholar
  23. 23.
    Lindsey JK, Jones B (1998) Choosing among generalized linear models applied to medical data. Stat Med 17:59–68CrossRefPubMedGoogle Scholar
  24. 24.
    Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR, International Huntington’s Disease Collaborative Group (2004) A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 65:267–277CrossRefPubMedGoogle Scholar
  25. 25.
    Anca MH, Gazit E, Loewenthal R, Ostrovsky O, Frydman M, Giladi N (2004) Different phenotypic expression in monozygotic twins with Huntington disease. Am J Med Genet A 124:89–91CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Branka Čajavec
    • 1
  • Hanspeter Herzel
    • 1
  • Samuel Bernard
    • 1
  1. 1.Institute for Theoretical BiologyHumboldt UniversityBerlinGermany

Personalised recommendations