Neurogenetics

, Volume 6, Issue 1, pp 1–16 | Cite as

PLP1-related inherited dysmyelinating disorders: Pelizaeus-Merzbacher disease and spastic paraplegia type 2

Review Article

Abstract

Pelizaeus-Merzbacher disease (PMD) and its allelic disorder, spastic paraplegia type 2 (SPG2), are among the best-characterized dysmyelinating leukodystrophies of the central nervous system (CNS). Both PMD and SPG2 are caused by mutations in the proteolipid protein 1 (PLP1) gene, which encodes a major component of CNS myelin proteins. Distinct types of mutations, including point mutations and genomic duplications and deletions, have been identified as causes of PMD/SPG2 that act through different molecular mechanisms. Studies of various PLP1 mutants in humans and animal models have shed light on the genomic, molecular, and cellular pathogeneses of PMD/SPG2. Recent discoveries include complex mutational mechanisms and associated disease phenotypes, novel cellular pathways that lead to the degeneration of oligodendrocytes, and genomic architectural features that result in unique chromosomal rearrangements. Here, I review the previous and current knowledge of the molecular pathogenesis of PMD/SPG2 and delineate future directions for PMD/SPG2 studies.

Keywords

Pelizaeus-Merzbacher disease PLP1 Spastic paraplegia type 2 Dysmyelinating disorder Mutations 

Notes

Acknowledgements

I would like to acknowledge Dr. James R. Lupski for his advice and support. I also thank Drs. Hitoshi Osaka, Kimiko Deguchi, Pawel Stankiewicz, and Ms. Jennifer Lee for their critical review. This work is supported in part by Muscular Dystrophy Association Developmental Grant and The Research Grant (16B-1) for Nervous and Mental Disorders from Ministry of Health, Labour and Welfare, Japan. Information about the Pelizaeus-Merzbacher Disease Foundation is available online (http://www.pmdfoundation.org).

References

  1. 1.
    Pelizaeus F (1885) Über eine eigentümliche Form spastischer Lähmung mit cerebral Erscheinungen auf hereditärer Grundlage (multiple Sklerose). Arch Psychiatr Nervenkr 16:698–710Google Scholar
  2. 2.
    Merzbacher L (1910) Eine eigenartige familiäre-hereditäre Erkrankungsform (Aplasia axialis extracorticalis congenita) Z Ges Neurol Psychiatr 3:1–138Google Scholar
  3. 3.
    Seitelberger F (1970) Pelizaeus-Merzbacher disease. In: Vinken P, Bruyn G (eds) Handbook of clinical neurology. Leucodystrophies and poliodystrophie. North-Holland, Amsterdam, pp 150–202Google Scholar
  4. 4.
    Willard HF, Riordan JR (1985) Assignment of the gene for myelin proteolipid protein to the X chromosome: implications for X-linked myelin disorders. Science 230:940–942Google Scholar
  5. 5.
    Hudson LD, Puckett C, Berndt J, Chan J, Gencic S (1989) Mutation of the proteolipid protein gene PLP in a human X chromosome-linked myelin disorder. Proc Natl Acad Sci USA 86:8128–8131Google Scholar
  6. 6.
    Trofatter JA, Dlouhy SR, DeMyer W, Conneally PM, Hodes ME (1989) Pelizaeus-Merzbacher disease: tight linkage to proteolipid protein gene exon variant. Proc Natl Acad Sci USA 86:9427–9430Google Scholar
  7. 7.
    Dautigny A, Mattei M-G, Morello D, Alliel PM, Pham-Dinh D, Amar L, Arnaud D, Simon D, Mattei JF, Guenet JL, Jollès P, Avner P (1986) The structural gene coding for myelin-associated proteolipid protein is mutated in jimpy mice. Nature 321:867–869CrossRefGoogle Scholar
  8. 8.
    Nave KA, Lai C, Bloom F, Milner RJ (1989) Jimpy mutant mouse: a 74-base deletion in the mRNA for myelin proteolipid protein and evidence for a primary defect in mRNA splicing. Proc Natl Acad Sci USA 83:9264–9268Google Scholar
  9. 9.
    Schneider A, Montague P, Griffiths I, Fanarraga M, Kennedy P, Brophy P, Nave KA (1992) Uncoupling of hypomyelination and glial cell death by a mutation in the proteolipid protein gene. Nature 358:758–761CrossRefGoogle Scholar
  10. 10.
    Gencic S, Hudson LD (1990) Conservative amino acid substitution in the myelin proteolipid protein of jimpymsd mice. J Neurosci 10:117–124Google Scholar
  11. 11.
    Boison D, Stoffel W (1989) Myelin-deficient rat: a point mutation in exon III (A→C, Thr 75→Pro) of myelin proteolipid protein causes dysmyelination and oligodendrocyte death. EMBO J 8:3295–3302Google Scholar
  12. 12.
    Nadon NL, Duncan ID, Hudson LD (1990) A point mutation in the proteolipid protein gene of the ‘shaking pup’ interrupts oligodendrocyte development. Development 110:529–537Google Scholar
  13. 13.
    Tosic M, Dolivo M, Domanska-Janik K, Matthieu JM (1994) Paralytic tremor (pt): a new allele of the proteolipid protein gene in rabbits. J Neurochem 63:2210–2216Google Scholar
  14. 14.
    Yool DA, Edgar JM, Montague P, Malcolm S (2000) The proteolipid protein gene and myelin disorders in man and animal models. Hum Mol Genet 9:987–992CrossRefGoogle Scholar
  15. 15.
    Hudson LD (2001) Pelizaeus-Merzbacher disease and the allelic disorder X-linked spastic paraplegia type 2. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited diseases. McGraw-Hill, New York, pp 5789–5798Google Scholar
  16. 16.
    Garbern J, Cambi F, Shy M, Kamholz J (1999) The molecular pathogenesis of Pelizaeus-Merzbacher disease. Arch Neurol 56:1210–1214CrossRefGoogle Scholar
  17. 17.
    Saugier-Veber P, Munnich A, Bonneau D, Rozet JM, Le Merrer M, Gil R, Boespflug-Tanguy O (1994) X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nat Genet 6:257–262CrossRefGoogle Scholar
  18. 18.
    Seitelberger F (1995) Neuropathology and genetics of Pelizaeus-Merzbacher disease. Brain Pathol 5:267–273Google Scholar
  19. 19.
    Miller MJ, Haxhiu MA, Georgiadis P, Gudz TI, Kangas CD, Macklin WB (2003) Proteolipid protein gene mutation induces altered ventilatory response to hypoxia in the myelin-deficient rat. J Neurosci 23:2265–2273Google Scholar
  20. 20.
    Boulloche J, Aicardi J (1986) Pelizaeus-Merzbacher disease: clinical and nosological study. J Child Neurol 1:233–239Google Scholar
  21. 21.
    Cailloux F, Gauthier-Barichard F, Mimault C, Isabelle V, Courtois V, Giraud G, Dastugue B, Boespflug-Tanguy O Clinical European Network on Brain Dysmyelinating Disease (2000) Genotype–phenotype correlation in inherited brain myelination defects due to proteolipid protein gene mutations. Eur J Hum Genet 8:837–845CrossRefGoogle Scholar
  22. 22.
    Fink JK (2003) The hereditary spastic paraplegias: nine genes and counting. Arch Neurol 60:1045–1049CrossRefPubMedGoogle Scholar
  23. 23.
    Johnston AW, McKusick VA (1962) A sex-linked recessive form of spastic paraplegia. Am J Hum Genet 14:83–94Google Scholar
  24. 24.
    Osaka H, Kawanishi C, Inoue K, Uesugi H, Hiroshi K, Nishiyama K, Yamada Y, Suzuki K, Kimura S, Kosaka K (1995) Novel nonsense proteolipid protein gene mutation as a cause of X-linked spastic paraplegia in twin males. Biochem Biophys Res Commun 215:835–841CrossRefGoogle Scholar
  25. 25.
    Cambi F, Tang XM, Cordray P, Fain PR, Keppen LD, Barker DF (1996) Refined genetic mapping and proteolipid protein mutation analysis in X-linked pure hereditary spastic paraplegia. Neurology 46:1112–1117Google Scholar
  26. 26.
    Knaap MS van der, Valk J (1995) Magnetic resonance of myelin, myelination, and myelin disorders. Springer, Berlin Heidelberg New York, pp 31–43Google Scholar
  27. 27.
    Barkovich AJ (2000) Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol 21:1099–1109PubMedGoogle Scholar
  28. 28.
    Barkovich AJ, Kjos BO, Jackson DE Jr, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180PubMedGoogle Scholar
  29. 29.
    Sie LTL, van der Knaap MS, van Wezel-Meijler G, Valk J (1997) MRI assessment of myelination of motor and sensory pathways in the brain of preterm and term-born infants. Neuropediatrics 28:97–105Google Scholar
  30. 30.
    Takanashi J, Sugita K, Tanabe Y, Nagasawa K, Inoue K, Osaka H, Kohno Y (1999) MR-revealed myelination in the cerebral corticospinal tract as a marker for Pelizaeus-Merzbacher’s disease with proteolipid protein gene duplication. AJNR Am J Neuroradiol 20:1822–1828Google Scholar
  31. 31.
    Inoue K, Tanaka H, Scaglia F, Araki A, Shaffer LG, Lupski JR (2001) Compensating for central nervous system dysmyelination: females with a proteolipid protein gene duplication and sustained clinical improvement. Ann Neurol 50:747–754CrossRefGoogle Scholar
  32. 32.
    Bonavita S, Schiffmann R, Moore DF, Frei K, Choi B, Patronas MN, Virta A, Boespflug-Tanguy O, Tedeschi G (2001) Evidence for neuroaxonal injury in patients with proteolipid protein gene mutations. Neurology 56:785–788Google Scholar
  33. 33.
    Garbern JY, Yool DA, Moore GJ, Wilds IB, Faulk MW, Klugmann M, Nave KA, Sistermans EA, van der Knaap MS, Bird TD, Shy ME, Kamholz JA, Griffiths IR (2002) Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 125:551–561CrossRefGoogle Scholar
  34. 34.
    Hobson GM, Huang Z, Sperle K, Stabley DL, Marks HG, Cambi F (2002) A PLP splicing abnormality is associated with an unusual presentation of PMD. Ann Neurol 52:477–488CrossRefGoogle Scholar
  35. 35.
    Nezu A, Kimura S, Takeshita S, Osaka H, Kimura K, Inoue K (1998) An MRI and MRS study of Pelizaeus-Merzbacher disease. Pediatr Neurol 18:334–337CrossRefGoogle Scholar
  36. 36.
    Pizzini F, Fatemi AS, Barker PB, Nagae-Poetscher LM, Horska A, Zimmerman AW, Moser HW, Bibat G, Naidu S (2003) Proton MR spectroscopic imaging in Pelizaeus-Merzbacher disease. AJNR Am J Neuroradiol 24:1683–1689Google Scholar
  37. 37.
    Spalice A, Popolizio T, Parisi P, Scarabino T, Iannetti P (2000) Proton MR spectroscopy in connatal Pelizaeus-Merzbacher disease. Pediatr Radiol 30:171–175CrossRefGoogle Scholar
  38. 38.
    Takanashi J, Sugita K, Osaka H, Ishii M, Niimi H (1997) Proton MR spectroscopy in Pelizaeus-Merzbacher disease. AJNR Am J Neuroradiol 18:533–535Google Scholar
  39. 39.
    Takanashi J, Inoue K, Tomita M, Kurihara A, Morita F, Ikehira H, Tanada S, Yoshitome E, Kohno Y (2002) Brain N-acetylaspartate is elevated in Pelizaeus-Merzbacher disease with PLP1 duplication. Neurology 58:237–241Google Scholar
  40. 40.
    Bjartmar C, Battistuta J, Terada N, Dupree E, Trapp BD (2002) N-acetylaspartate is an axon-specific marker of mature white matter in vivo: a biochemical and immunohistochemical study on the rat optic nerve. Ann Neurol 51:51–58CrossRefGoogle Scholar
  41. 41.
    Nave KA, Lai C, Bloom FE, Milner RJ (1987) Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin. Proc Natl Acad Sci USA 84:5665–5669Google Scholar
  42. 42.
    Weimbs T, Stoffel W (1992) Proteolipid protein (PLP) of CNS myelin: positions of free, disulfide-bonded, and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP. Biochemistry 31:12289–12296Google Scholar
  43. 43.
    Gow A, Gragerov A, Gard A, Colman DR, Lazzarini RA (1997) Conservation of topology, but not conformation, of the proteolipid proteins of the myelin sheath. J Neurosci 17:181–189Google Scholar
  44. 44.
    Popot JL, Pham Dinh D, Dautigny A (1991) Major myelin proteolipid: the 4-alpha-helix topology. J Membr Biol 123:278Google Scholar
  45. 45.
    Bongarzone ER, Campagnoni CW, Kampf K, Jacobs EC, Handley VW, Schonmann V, Campagnoni AT (1999) Identification of a new exon in the myelin proteolipid protein gene encoding novel protein isoforms that are restricted to the somata of oligodendrocytes and neurons. J Neurosci 19:8349–8357Google Scholar
  46. 46.
    Jacobs EC, Bongarzone ER, Campagnoni CW, Kampf K, Campagnoni AT (2003) Soma-restricted products of the myelin proteolipid gene are expressed primarily in neurons in the developing mouse nervous system. Dev Neurosci 25:96–104CrossRefGoogle Scholar
  47. 47.
    Nave KA, Lemke G (1991) Induction of the myelin proteolipid protein (PLP) gene in C6 glioblastoma cells: functional analysis of the PLP promotor. J Neurosci 11:3060–3069Google Scholar
  48. 48.
    Berndt JA, Kim JG, Hudson LD (1992) Identification of cis-regulatory elements in the myelin proteolipid protein (PLP) gene. J Biol Chem 267:14730–14737Google Scholar
  49. 49.
    Wight PA, Dobretsova A (2004) Where, when and how much: regulation of myelin proteolipid protein gene expression. Cell Mol Life Sci 61:810–821CrossRefGoogle Scholar
  50. 50.
    Klugmann M, Schwab MH, Puhlhofer A, Schneider A, Zimmermann F, Griffiths IR, Nave KA (1997) Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18:59–70CrossRefGoogle Scholar
  51. 51.
    Boison D, Stoffel W (1994) Disruption of the compacted myelin sheath of axons of the central nervous system in proteolipid protein-deficient mice. Proc Natl Acad Sci USA 91:11709–11713Google Scholar
  52. 52.
    Jurevics H, Hostettler J, Sammond DW, Nave KA, Toews AD, Morell P (2003) Normal metabolism but different physical properties of myelin from mice deficient in proteolipid protein. J Neurosci Res 71:826–834CrossRefGoogle Scholar
  53. 53.
    Garbern JY, Cambi F, Tang X-M, Sima AA, Vallat JM, Bosch EP, Lewis R, Shy M, Sohi J, Kraft G, Chen KL, Joshi I, Leonard DG, Johnson W, Raskind W, Dlouhy SR, Pratt V, Hodes ME, Bird T, Kamholz J (1997) Proteolipid protein is necessary in peripheral as well as central myelin. Neuron 19:205–218CrossRefGoogle Scholar
  54. 54.
    Boison D, Bussow H, D’Urso D, Muller HW, Stoffel W (1995) Adhesive properties of proteolipid protein are responsible for the compaction of CNS myelin sheaths. J Neurosci 15:5502–5513Google Scholar
  55. 55.
    Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab MH, Schneider A, Zimmermann F, McCulloch M, Nadon N, Nave KA (1998) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280:1610–1613CrossRefGoogle Scholar
  56. 56.
    Ikenaka K, Kagawa T, Mikoshiba K (1992) Selective expression of DM-20, an alternatively spliced myelin proteolipid protein gene product, in developing nervous system and in nonglial cells. J Neurochem 58:2248–2253Google Scholar
  57. 57.
    Peyron F, Timsit S, Thomas JL, Kagawa T, Ikenaka K, Zalc B (1997) In situ expression of PLP/DM-20, MBP, and CNP during embryonic and postnatal development of the jimpy mutant and of transgenic mice overexpressing PLP. J Neurosci Res 50:190–201Google Scholar
  58. 58.
    Timsit S, Martinez S, Allinquant B, Peyron F, Puelles L, Zalc B (1995) Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J Neurosci 15:1012–1024Google Scholar
  59. 59.
    Yu WP, Collarini EJ, Pringle NP, Richardson WD (1994) Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron 12:1353–1362CrossRefGoogle Scholar
  60. 60.
    Nery S, Wichterle H, Fishell G (2001) Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128:527–540Google Scholar
  61. 61.
    Zhou Q, Wang S, Anderson D.J (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix–loop–helix transcription factors. Neuron 25:331–343CrossRefGoogle Scholar
  62. 62.
    Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000) Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329CrossRefGoogle Scholar
  63. 63.
    Chandran S, Kato H, Gerreli D, Compston A, Svendsen CN, Allen ND (2003) FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 130:6599–6609CrossRefGoogle Scholar
  64. 64.
    Griffiths IR, Dickinson P, Montague P (1995) Expression of the proteolipid protein gene in glial cells of the post-natal peripheral nervous system of rodents. Neuropathol Appl Neurobiol 21:97–110Google Scholar
  65. 65.
    Richardson WD, Pringle NP, Yu WP, Hall AC (1997) Origins of spinal cord oligodendrocytes: possible developmental and evolutionary relationships with motor neurons. Dev Neurosci 19:58–68Google Scholar
  66. 66.
    Jacobs EC, Bongarzone ER, Campagnoni CW, Campagnoni AT (2004) Embryonic expression of the soma-restricted products of the myelin proteolipid gene in motor neurons and muscle. Neurochem Res 29:997–1002CrossRefGoogle Scholar
  67. 67.
    Campagnoni CW, Garbay B, Micevych P, Pribyl T, Kampf K, Handley VW, Campagnoni AT (1992) DM 20 mRNA splice product of the myelin proteolipid protein gene is expressed in the murine heart. J Neurosci Res 33:148–155Google Scholar
  68. 68.
    Feng JM, Fernandes AO, Bongarzone ER, Campagnoni CW, Kampf K, Campagnoni AT (2003) Expression of soma-restricted proteolipid/DM 20 proteins in lymphoid cells. J Neuroimmunol 144:9–15CrossRefGoogle Scholar
  69. 69.
    Pribyl TM, Campagnoni CW, Kampf K, Kashima T, Handley VW, McMahon J, Campagnoni AT (1996) Expression of the myelin proteolipid protein gene in the human fetal thymus. J Neuroimmunol 67:125–130CrossRefGoogle Scholar
  70. 70.
    Bruno R, Sabater L, Sospedra M, Ferrer-Francesch X, Escudero D, Martinez-Caceres E, Pujol-Borrell R (2002) Multiple sclerosis candidate autoantigens except myelin oligodendrocyte glycoprotein are transcribed in human thymus. Eur J Immunol 32:2737–2747CrossRefGoogle Scholar
  71. 71.
    Shy ME, Hobson G, Jain M, Boespflug-Tanguy O, Garbern J, Sperle K, Li W, Gow A, Rodriguez D, Bertini E, Mancias P, Krajewski K, Lewis R, Kamholz J (2003) Schwann cell expression of PLP1 but not DM 20 is necessary to prevent neuropathy. Ann Neurol 53:354–365CrossRefGoogle Scholar
  72. 72.
    Kitagawa K, Sinoway MP, Yang C, Gould RM, Colman DR (1993) A proteolipid protein gene family: expression in sharks and rays and possible evolution from an ancestral gene encoding a pore-forming polypeptide. Neuron 11:433–448CrossRefGoogle Scholar
  73. 73.
    Yoshida M, Colman DR (1996) Parallel evolution and coexpression of the proteolipid proteins and protein zero in vertebrate myelin. Neuron 16:1115–1126CrossRefGoogle Scholar
  74. 74.
    Yan Y, Lagenaur C, Narayanan C. (1993) Molecular cloning of M6: identification of a PLP/DM 20 gene family. Neuron 11:423–431CrossRefGoogle Scholar
  75. 75.
    Stecca B, Southwood CM, Gragerov A, Kelley KA, Friedrich VL Jr, Gow A (2000) The evolution of lipophilin genes from invertebrates to tetrapods: DM-20 cannot replace proteolipid protein in CNS myelin. J Neurosci 20:4002–4010Google Scholar
  76. 76.
    Boucher SE, Cypher MA, Carlock LR, Skoff RP (2002) Proteolipid protein gene modulates viability and phenotype of neurons. J Neurosci 22:1772–1783Google Scholar
  77. 77.
    Ye P, Bagnell R, D’Ercole AJ (2003) Mouse NG2+ oligodendrocyte precursors express mRNA for proteolipid protein but not its DM-20 variant: a study of laser microdissection-captured NG2+ cells. J Neurosci 23:4401–4405Google Scholar
  78. 78.
    Yamaguchi Y, Ikenaka K, Niinobe M, Yamada H, Mikoshiba K (1996) Myelin proteolipid protein (PLP), but not DM-20, is an inositol hexakisphosphate-binding protein. J Biol Chem 271:27838–27846CrossRefGoogle Scholar
  79. 79.
    Gudz TI, Schneider TE, Haas TA, Macklin WB (2002) Myelin proteolipid protein forms a complex with integrins and may participate in integrin receptor signaling in oligodendrocytes. J Neurosci 22:7398–7407Google Scholar
  80. 80.
    Sivakumar K, Sambuughin N, Selenge B, Nagle JW, Baasanjav D, Hudson LD, Goldfarb LG (1999) Novel exon 3B proteolipid protein gene mutation causing late-onset spastic paraplegia type 2 with variable penetrance in female family members. Ann Neurol 45:680–683Google Scholar
  81. 81.
    Bond C, Si X, Crisp M, Wong P, Paulson GW, Boesel CP, Dlouhy SR, Hodes ME (1997) Family with Pelizaeus-Merzbacher disease/X-linked spastic paraplegia and a nonsense mutation in exon 6 of the proteolipid protein gene. Am J Med Genet 71:357–360Google Scholar
  82. 82.
    Inoue K, Khajavi M, Ohyama T, Hirabayashi S, Wilson J, Reggin JD, Mancias P, Butler IJ, Wilkinson MF, Wegner M, Lupski JR (2004) Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 36:361–369CrossRefPubMedGoogle Scholar
  83. 83.
    Gow A, Lazzarini RA (1996) A cellular mechanism governing the severity of Pelizaeus-Merzbacher disease. Nat Genet 13:422–428CrossRefGoogle Scholar
  84. 84.
    Raskind WH, Williams CA, Hudson LD, Bird TD (1991) Complete deletion of the proteolipid protein gene (PLP) in a family with X-linked Pelizaeus-Merzbacher disease. Am J Hum Genet 49:1355–1360Google Scholar
  85. 85.
    Sistermans EA, de Wijs IJ, de Coo RFM, Smit LM, Menko FH, van Oost BA (1996) A (G-to-A) mutation in the initiation codon of the proteolipid protein gene causing a relatively mild form of Pelizaeus-Merzbacher disease in a Dutch family. Hum Genet 97:337–339CrossRefGoogle Scholar
  86. 86.
    Inoue K, Osaka H, Thurston VC, Clarke JTR, Yoneyama A, Rosenbarker L, Bird TD, Hodes ME, Shaffer LG, Lupski JR (2002) Genomic rearrangements resulting in PLP1 deletion occur by non-homologous end-joining and cause different dysmyelinating phenotypes in males and females. Am J Hum Genet 71:838–853CrossRefPubMedGoogle Scholar
  87. 87.
    Griffiths I, Klugmann M, Anderson T, Thomson C, Vouyiouklis D, Nave KA (1998) Current concepts of PLP and its role in the nervous system. Microsc Res Tech 41:344–358CrossRefGoogle Scholar
  88. 88.
    Knapp PE, Skoff RP, Redstone DW (1986) Oligodendroglial cell death in jimpy mice: an explanation for the myelin deficit. J Neurosci 6:2813–2822Google Scholar
  89. 89.
    Gow A, Southwood CM, Lazzarini RA (1998) Disrupted proteolipid protein trafficking results in oligodendrocyte apoptosis in an animal model of Pelizaeus-Merzbacher disease. J Cell Biol 140:925–934CrossRefGoogle Scholar
  90. 90.
    Knapp PE, Bartlett WP, Williams LA, Yamada M, Ikenaka K, Skoff RP (1999) Programmed cell death without DNA fragmentation in the jimpy mouse: secreted factors can enhance survival. Cell Death Differ 6:136–145CrossRefGoogle Scholar
  91. 91.
    Schneider AM, Griffiths IR, Readhead C, Nave KA (1995) Dominant-negative action of the jimpy mutation in mice complemented with an autosomal transgene for myelin proteolipid protein. Proc Natl Acad Sci USA 92:4447–4451Google Scholar
  92. 92.
    Nadon NL, Arnheiter H, Hudson LD (1994) A combination of PLP and DM 20 transgenes promotes partial myelination in the jimpy mouse. J Neurochem 63:822–833Google Scholar
  93. 93.
    Southwood C, Gow A (2001) Molecular pathways of oligodendrocyte apoptosis revealed by mutations in the proteolipid protein gene. Microsc Res Tech 52:700–708CrossRefGoogle Scholar
  94. 94.
    Swanton E, High S, Woodman P (2003) Role of calnexin in the glycan-independent quality control of proteolipid protein. EMBO J 22:2948–2958CrossRefGoogle Scholar
  95. 95.
    Southwood CM, Garbern J, Jiang W, Gow A (2002) The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease. Neuron 36:585–596CrossRefGoogle Scholar
  96. 96.
    Gow A, Sharma R (2003) The unfolded protein response in protein aggregating diseases. Neuromolecular Med 4:73–94CrossRefGoogle Scholar
  97. 97.
    Forman MS, Lee VM, Trojanowski JQ (2003) “Unfolding” pathways in neurodegenerative disease. Trends Neurosci 26:407–410CrossRefGoogle Scholar
  98. 98.
    Osaka H, Kawanishi C, Inoue K, Onishi H, Kobayashi T, Sugiyama N, Kosaka K, Nezu A, Fujii K, Sugita K, Kodama K, Murayama K, Murayama S, Kanazawa I, Kimura S (1999) Pelizaeus-Merzbacher disease: three novel mutations and implication for locus heterogeneity. Ann Neurol 45:59–64CrossRefGoogle Scholar
  99. 99.
    Vaurs-Barriere C, Wong K, Weibel TD, Abu-Asab M, Weiss MD, Kaneski CR, Mixon TH, Bonavita S, Creveaux I, Heiss JD, Tsokos M, Goldin E, Quarles RH, Boespflug-Tanguy O, Schiffmann R (2003) Insertion of mutant proteolipid protein results in missorting of myelin proteins. Ann Neurol 54:769–780CrossRefGoogle Scholar
  100. 100.
    Aoyagi Y, Kobayashi H, Tanaka K, Ozawa T, Nitta H, Tsuji S (1999) A de novo splice donor site mutation causes in-frame deletion of 14 amino acids in the proteolipid protein in Pelizaeus-Merzbacher disease. Ann Neurol 46:112–115CrossRefGoogle Scholar
  101. 101.
    Hobson GM, Davis AP, Stowell NC, Kolodny EH, Sistermans EA, de Coo IF, Funanage VL, Marks HG (2000) Mutations in noncoding regions of the proteolipid protein gene in Pelizaeus-Merzbacher disease. Neurology 55:1089–1096Google Scholar
  102. 102.
    Inoue K, Osaka H, Imaizumi K, Nezu A, Takanashi J, Arii J, Murayama K, Ono J, Kikawa Y, Mito T, Shaffer LG, Lupski JR (1999) Proteolipid protein gene duplications causing Pelizaeus-Merzbacher disease: molecular mechanism and phenotypic manifestations. Ann Neurol 45:624–632Google Scholar
  103. 103.
    Sistermans EA, de Coo RFM, De Wijs IJ, Van Oost BA (1998) Duplication of the proteolipid protein gene is the major cause of Pelizaeus-Merzbacher disease. Neurology 50:1749–1754Google Scholar
  104. 104.
    Mimault C, Giraud G, Courtois V, Cailloux F, Boire JY, Dastugue B, Boespflug-Tanguy O (1999) Proteolipoprotein gene analysis in 82 patients with sporadic Pelizaeus-Merzbacher disease: duplications, the major cause of the disease, originate more frequently in male germ cells, but point mutations do not. Am J Hum Genet 65:360–369CrossRefGoogle Scholar
  105. 105.
    Woodward K, Kendall E, Vetrie D, Malcolm S. (1998) Pelizaeus-Merzbacher disease: identification of Xq22 proteolipid-protein duplications and characterization of breakpoints by interphase FISH. Am J Hum Genet 63:207–217CrossRefGoogle Scholar
  106. 106.
    Inoue K, Osaka H, Sugiyama N, Kawanishi C, Onishi H, Nezu A, Kimura K, Kimura S, Yamada Y, Kosaka K (1996) A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR. Am J Hum Genet 59:32–39Google Scholar
  107. 107.
    Ellis D, Malcolm S (1994) Proteolipid protein gene dosage effect in Pelizaeus-Merzbacher disease. Nat Genet 6:333–334CrossRefGoogle Scholar
  108. 108.
    Lupski JR (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14:417–422CrossRefPubMedGoogle Scholar
  109. 109.
    Inoue K, Lupski JR (2002) Molecular mechanisms for genomic disorders. Annu Rev Genomics Hum Genet 3:199–242CrossRefGoogle Scholar
  110. 110.
    Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18:74–82CrossRefPubMedGoogle Scholar
  111. 111.
    Woodward K, Palmer R, Rao K, Malcolm S. (1999) Prenatal diagnosis by FISH in a family with Pelizaeus-Merzbacher disease caused by duplication of PLP gene. Prenat Diagn 19:266–268CrossRefGoogle Scholar
  112. 112.
    Inoue K, Kanai M, Tanabe Y, Kubota T, Kashork CD, Wakui K, Fukushima Y, Lupski JR, Shaffer LG (2001) Prenatal interphase FISH diagnosis of PLP1 duplication associated with Pelizaeus-Merzbacher disease. Prenat Diagn 21:1133–1136CrossRefGoogle Scholar
  113. 113.
    Garbern J, Hobson G. (2002) Prenatal diagnosis of Pelizaeus-Merzbacher disease. Prenat Diagn 22:1033–1035CrossRefGoogle Scholar
  114. 114.
    Shiraishi K, Itoh M, Sano K, Takashima S, Kubota T (2003) Myelination of a fetus with Pelizaeus-Merzbacher disease: immunopathological study. Ann Neurol 54:259–262CrossRefGoogle Scholar
  115. 115.
    Kagawa T, Ikenaka K, Inoue Y, Kuriyama S, Tsujii T, Nakao J, Nakajima K, Aruga J, Okano H, Mikoshiba K (1994) Glial cell degeneration and hypomyelination caused by overexpression of myelin proteolipid protein gene. Neuron 13:427–442CrossRefGoogle Scholar
  116. 116.
    Readhead C, Schneider A, Griffiths I, Nave KA (1994) Premature arrest of myelin formation in transgenic mice with increased proteolipid protein gene dosage. Neuron 12:583–595CrossRefGoogle Scholar
  117. 117.
    Anderson TJ, Schneider A, Barrie JA, Klugmann M, McCulloch MC, Kirkham D, Kyriakides E, Nave KA, Griffiths IR (1998) Late-onset neurodegeneration in mice with increased dosage of the proteolipid protein gene. J Comp Neurol 394:506–519CrossRefGoogle Scholar
  118. 118.
    Inoue Y, Kagawa T, Matsumura Y, Ikenaka K, Mikoshiba K (1996) Cell death of oligodendrocytes or demyelination induced by overexpression of proteolipid protein depending on expressed gene dosage. Neurosci Res 25:161–172Google Scholar
  119. 119.
    Simons M, Kramer EM, Macchi P, Rathke-Hartlieb S, Trotter J, Nave KA, Schulz JB (2002) Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes: implications for Pelizaeus-Merzbacher disease. J Cell Biol 157:327–336CrossRefGoogle Scholar
  120. 120.
    Cerghet M, Bessert DA, Nave KA, Skoff RP (2001) Differential expression of apoptotic markers in jimpy and in Plp overexpressors: evidence for different apoptotic pathways. J Neurocytol 30:841–855CrossRefGoogle Scholar
  121. 121.
    Simons M, Kramer EM, Thiele C, Stoffel W, Trotter J (2000) Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J Cell Biol 151:143–154CrossRefGoogle Scholar
  122. 122.
    Shaw CJ, Lupski JR (2004) Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet 13:R57–64CrossRefPubMedGoogle Scholar
  123. 123.
    Hodes ME, Woodward K, Spinner NB, Emanuel BS, Enrico-Simon A, Kamholz J, Stambolian D, Zackai EH, Pratt VM, Thomas IT, Crandall K, Dlouhy SR, Malcolm S. (2000) Additional copies of the proteolipid protein gene causing Pelizaeus-Merzbacher disease arise by separate integration into the X chromosome. Am J Hum Genet 67:14–22CrossRefGoogle Scholar
  124. 124.
    Ida T, Miharu N, Hayashitani M, Shimokawa O, Harada N, Samura O, Kubota T, Niikawa N, Matsumoto N. (2003) Functional disomy for Xq22-q23 in a girl with complex rearrangements of chromosomes 3 and X. Am J Med Genet 120A:557–561CrossRefGoogle Scholar
  125. 125.
    Woodward K, Cundall M, Palmer R, Surtees R, Winter RM, Malcolm S (2003) Complex chromosomal rearrangement and associated counseling issues in a family with Pelizaeus-Merzbacher disease. Am J Med Genet 118A:15–24CrossRefGoogle Scholar
  126. 126.
    Saito-Ohara F, Fukuda Y, Ito M, Agarwala KL, Hayashi M, Matsuo M, Imoto I, Yamakawa K, Nakamura Y, Inazawa J (2002) The Xq22 inversion breakpoint interrupted a novel Ras-like GTPase gene in a patient with Duchenne muscular dystrophy and profound mental retardation. Am J Hum Genet 71:637–645CrossRefGoogle Scholar
  127. 127.
    Lazzarini A, Schwarz KO, Jiang S, Stenroos ES, Lehner T, Johnson WG, (1997) Pelizaeus-Merzbacher-like disease: exclusion of the proteolipid protein locus and documentation of a new locus on Xq. Neurology 49:824–832Google Scholar
  128. 128.
    Uhlenberg B, Schuelke M, Rüschendorf F, Ruf N, Kaindl AM, Henneke M, Thiele H, Stoltenburg-Didinger G, Aksu F, Topaloglu H, Nürnberg P, Hübner C, Weschke B, Gärtner J (2004) Mutations in the gene encoding gap junction protein α12 (connexin 46.6) cause Pelizaeus-Merzbacher-like disease. Am J Hum Genet 75:251–260CrossRefGoogle Scholar
  129. 129.
    Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M (1998) Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18:237–250Google Scholar
  130. 130.
    Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, Bartsch U, Wegner M (2002) Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 16:165–170CrossRefGoogle Scholar
  131. 131.
    Inoue K, Tanabe Y, Lupski J (1999) Myelin deficiencies in both the central and peripheral nervous system associated with a SOX10 mutation. Ann Neurol 46:313–318CrossRefGoogle Scholar
  132. 132.
    Inoue K, Shilo K, Boerkoel CF, Crowe C, Sawady J, Lupski JR, Agamanolis DP (2002) Congenital hypomyelinating neuropathy, central dysmyelination, and Waardenburg-Hirschsprung disease: phenotypes linked by SOX10 mutation. Ann Neurol 52:836–842CrossRefGoogle Scholar
  133. 133.
    Pingault V, Girard M, Bondurand N, Dorkins H, Van Maldergem L, Mowat D, Shimotake T, Verma I, Baumann C, Goossens M (2002) SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum Genet 111:198–206CrossRefGoogle Scholar
  134. 134.
    Touraine RL, Attie-Bitach T, Manceau E, Korsch E, Sarda P, Pingault V, Encha-Razavi F, Pelet A, Auge J, Nivelon-Chevallier A, Holschneider AM, Munnes M, Doerfler W, Goossens M, Munnich A, Vekemans M, Lyonnet S (2000) Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain. Am J Hum Genet 66:1496–1503CrossRefGoogle Scholar
  135. 135.
    Toki F, Suzuki N, Inoue K, Suzuki M, Hirakata K, Nagai K, Kuroiwa M, Lupski JR, Tsuchida Y (2003) Intestinal aganglionosis associated with the Waardenburg syndrome: report of two cases and review of the literature. Pediatr Surg Int 19:725–728CrossRefGoogle Scholar
  136. 136.
    Pingault V, Bondurand N, Le Caignec C, Tardieu S, Lemort N, Dubourg O, Le Guern E, Goossens M, Boespflug-Tanguy O (2001) The SOX10 transcription factor: evaluation as a candidate gene for central and peripheral hereditary myelin disorders. J Neurol 248:496–499CrossRefGoogle Scholar
  137. 137.
    Nance MA, Boyadjiev S, Pratt VM, Taylor S, Hodes ME, Dlouhy S. R (1996) Adult-onset neurodegenerative disorder due to proteolipid protein gene mutation in the mother of a man with Pelizaeus-Merzbacher disease. Neurology 47:1333–1335Google Scholar
  138. 138.
    Hodes ME, Blank CA, Pratt VM, Morales J, Napier J, Dlouhy SR (1997) Nonsense mutation in exon 3 of the proteolipid protein gene (PLP) in a family with an unusual form of Pelizaeus-Merzbacher disease. Am J Med Genet 69:121–125Google Scholar
  139. 139.
    Hodes ME, DeMyer WE, Pratt VM, Edwards MK, Dlouhy SR (1995) Girl with signs of Pelizaeus-Merzbacher disease heterozygous for a mutation in exon 2 of the proteolipid protein gene. Am J Med Genet 55:397–401Google Scholar
  140. 140.
    Bartlett WP, Skoff RP (1986) Expression of the jimpy gene in the spinal cords of heterozygous female mice. I. An early myelin deficit followed by compensation. J Neurosci 6:2802–2812Google Scholar
  141. 141.
    Bartlett WP, Skoff RP (1989) Expression of the jimpy gene in the spinal cords of heterozygous female mice. 2. Oligodendroglial and endothelial cell hyperplasia. Brain Res Dev Brain Res 47:1–11CrossRefGoogle Scholar
  142. 142.
    Kagawa T, Nakao J, Yamada M, Shimizu K, Hayakawa T, Mikoshiba K, Ikenaka K (1994) Fate of jimpy-type oligodendrocytes in jimpy heterozygote. J Neurochem 62:1887–1893Google Scholar
  143. 143.
    Fanarraga ML, Griffiths IR, McCulloch MC, Barrie JA, Cattanach BM, Brophy PJ, Kennedy PG (1991) Rumpshaker: an X-linked mutation affecting CNS myelination. A study of the female heterozygote. Neuropathol Appl Neurobiol 17:323–334Google Scholar
  144. 144.
    Cuddon PA, Lipsitz D, Duncan ID (1998) Myelin mosaicism and brain plasticity in heterozygous females of a canine X-linked trait. Ann Neurol 44:771–779Google Scholar
  145. 145.
    Woodward K, Kirtland K, Dlouhy S, Raskind W, Bird T, Malcolm S, Abeliovich D (2000) X-inactivation phenotype in carriers of Pelizaeus-Merzbacher disease: skewed in carriers of a duplication and random in carriers of point mutations. Eur J Hum Genet 8:449–454CrossRefGoogle Scholar
  146. 146.
    Edgar JM, Anderson TJ, Dickinson PJ, Barrie JA, McCulloch MC, Nave KA, Griffiths IR (2002) Survival of, and competition between, oligodendrocytes expressing different alleles of the Plp gene. J Cell Biol 158:719–729CrossRefGoogle Scholar
  147. 147.
    Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703–713CrossRefGoogle Scholar
  148. 148.
    Popko B (2003) Notch signaling: a rheostat regulating oligodendrocyte differentiation? Dev Cell 5:668–669CrossRefGoogle Scholar
  149. 149.
    Frost EE, Buttery PC, Milner R, ffrench-Constant C (1999) Integrins mediate a neuronal survival signal for oligodendrocytes. Curr Biol 9:1251–1254CrossRefGoogle Scholar
  150. 150.
    Colello RJ, Pott U (1997) Signals that initiate myelination in the developing mammalian nervous system. Mol Neurobiol 15:83–100Google Scholar
  151. 151.
    Rosenfeld J, Freidrich VL Jr (1983) Axonal swellings in jimpy mice: does lack of myelin cause neuronal abnormalities? Neuroscience 10:959–966CrossRefGoogle Scholar
  152. 152.
    Edgar JM, McLaughlin M, Yool D, Zhang SC, Fowler JH, Montague P, Barrie JA, McCulloch MC, Duncan ID, Garbern J, Nave KA, Griffiths IR (2004) Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. J Cell Biol 166:121–131CrossRefGoogle Scholar
  153. 153.
    Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33:366–374CrossRefGoogle Scholar
  154. 154.
    Helynck G, Luu B, Nussbaum JL, Picken D, Skalidis G, Trifilieff E, Van Dorsselaer A, Seta P, Sandeaux R, Gavach C, Heitz F, Simon D, Spach D (1983) Brain proteolipids. Isolation, purification and effect on ionic permeability of membranes. Eur J Biochem 133:689–695Google Scholar
  155. 155.
    Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH (2003) Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci USA 100:9946–9951CrossRefGoogle Scholar
  156. 156.
    Passage E, Norreel JC, Noack-Fraissignes P, Sanguedolce V, Pizant J, Thirion X, Robaglia-Schlupp A, Pellissier JF, Fontés M (2004) Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nat Med 10:396–401CrossRefGoogle Scholar
  157. 157.
    Sereda MW, Meyer zu Horste G, Suter U, Uzma N, Nave KA (2003) Therapeutic administration of progesterone antagonist in a model of Charcot-Marie-Tooth disease (CMT-1A). Nat Med 9:1533–1537CrossRefGoogle Scholar
  158. 158.
    Brüstle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756CrossRefGoogle Scholar
  159. 159.
    Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 97:6126–6131CrossRefGoogle Scholar
  160. 160.
    Mitome M, Low HP, van den Pol A, Nunnari JJ, Wolf MK, Billings-Gagliardi S, Schwartz WJ (2001) Towards the reconstruction of central nervous system white matter using neural precursor cells. Brain 124:2147–2161CrossRefGoogle Scholar
  161. 161.
    Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422:688–694CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP)Kodaira, Tokyo 187-8502Japan

Personalised recommendations