Advertisement

Neurogenetics

, Volume 6, Issue 1, pp 37–44 | Cite as

Functional polymorphisms in the human β4 subunit of nicotinic acetylcholine receptors

  • Yong Liang
  • Ramiro Salas
  • Lisa Marubio
  • Dani Bercovich
  • Mariella De Biasi
  • Arthur L. Beaudet
  • John A. DaniEmail author
Original Article

Abstract.

Human nicotinic acetylcholine receptor (nAChR) polymorphisms occur in different ethnic populations and may result in differences in nAChR ion channel properties. We have identified four nAChR beta 4 subunit (β4) nucleotide variants: 392C→T, 526C→T, 538A→G, and 1519A→G. Their corresponding amino acid substitutions are: Thr to Ile at codon 91 (T91I), Arg to Trp at codon 136 (R136W), Ser to Gly at codon 140 (S140G), and Met to Val at codon 467 (M467V), respectively. The nAChR ion channel properties of these variants were studied and compared with the more-common (wild-type) allele as wild-types. The nAChRs (α4β4 channels) were expressed heterologously in Xenopus oocytes and studied using the two-electrode voltage clamp technique to reveal functional differences between the wild-type and the variants. The receptors containing the R136W and M467V mutations (or variants) had a higher sensitivity to acetylcholine and lower EC50 than the wild-type. The T91I mutation had lower sensitivity to acetylcholine and the EC50 was larger than in wild-type nAChRs. The S140G mutation had a dose-response relationship that was similar to the wild-type. The T91I, R136W, and M467V mutations (or variants) also showed a slightly greater degree of steady-state desensitization than the wild-type in response to a 30-min exposure to one tenth of their EC50. The present results demonstrate that human β4 nAChR DNA polymorphisms result in functional changes, and suggest that certain individuals with those variants may be more or less sensitive to cholinergic drugs or to dysfunctions associated with nicotinic cholinergic systems.

Keywords

Acetylcholine Ion channel Nicotinic acetylcholine receptor Subunit Polymorphism  Xenopus oocyte 

Notes

Acknowledgements.

We thank Dr. Laura Schrader and Dr. Hiroshi Tsuneki for technical help and the staff in Dr. David Sweatt’s laboratory for providing Xenopus oocytes. We thank Dr. Daniel Bertrand and Dr. Jon Lindstrom for providing human nAChR subunits. The work was supported by the National Institutes of Health grants from the National Institute of Neurological Disorders and Stroke and the National Institute on Drug Abuse. The experiments comply with the requirements for animal care for the Unites States and for Baylor College of Medicine.

References

  1. 1.
    Changeux JP, Devillers-Thiery A, Chemouilli P (1984) Acetylcholine receptor: an allosteric protein. Science 225:1335–1345PubMedGoogle Scholar
  2. 2.
    Lal R, Yu L (1993) Atomic force microscopy of cloned nicotinic acetylcholine receptor expressed in Xenopus oocytes. Proc Natl Acad Sci U S A 90:7280–7284PubMedGoogle Scholar
  3. 3.
    Garcia-Guzman M, Sala F, Sala S, Campos-Caro A, Stuhmer W, Gutierrez LM, Criado M (1995) Alpha-Bungarotoxin-sensitive nicotinic receptors on bovine chromaffin cells: molecular cloning, functional expression and alternative splicing of the alpha 7 subunit. Eur J Neurosci 7:647–655PubMedGoogle Scholar
  4. 4.
    Sankararamakrishnan R, Adcock C, Sansom MS (1996) The pore domain of the nicotinic acetylcholine receptor: molecular modeling, pore dimensions, and electrostatics. Biophys J 71:1659–1671PubMedGoogle Scholar
  5. 5.
    Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114CrossRefPubMedGoogle Scholar
  6. 6.
    Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458CrossRefPubMedGoogle Scholar
  7. 7.
    Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 424:949–955CrossRefGoogle Scholar
  8. 8.
    Alkondon M, Pereira EF, Eisenberg HM, Albuquerque EX (2000) Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and disinhibition of neuronal networks. J Neurosci 20:66–75PubMedGoogle Scholar
  9. 9.
    Lena C, Changeux JP, Mulle C (1993) Evidence for “preterminal” nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus. J Neurosci 13:2680–2688PubMedGoogle Scholar
  10. 10.
    Changeux JP, Bertrand D, Corringer PJ, Dehaene S, Edelstein S, Lena C, Le Novere N, Marubio L, Picciotto M, Zoli M (1998) Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Brain Res Rev 26:198–216CrossRefPubMedGoogle Scholar
  11. 11.
    Sorenson EM, Shiroyama T, Kitai ST (1998) Postsynaptic nicotinic receptors on dopaminergic neurons in the substantia nigra pars compacta of the rat. Neuroscience 87:659–673CrossRefPubMedGoogle Scholar
  12. 12.
    Cao YJ, Peng YY (1998) Activation of nicotinic receptor-induced postsynaptic responses to luteinizing hormone-releasing hormone in bullfrog sympathetic ganglia via a Na+-dependent mechanism. Proc Natl Acad Sci U S A 95:12689–12694CrossRefPubMedGoogle Scholar
  13. 13.
    Ji D, Lape R, Dani JA (2001) Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31:131–141CrossRefPubMedGoogle Scholar
  14. 14.
    McGehee DS (2002) Nicotinic receptors and hippocampal synaptic plasticity—it’s all in the timing. Trends Neurosci 25:171–172CrossRefPubMedGoogle Scholar
  15. 15.
    Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:401–404CrossRefPubMedGoogle Scholar
  16. 16.
    Dani JA, De Biasi M (2001) Cellular mechanisms of nicotine addiction. Pharmacol Biochem Behav 70:439–446CrossRefPubMedGoogle Scholar
  17. 17.
    Dani JA, Heinemann S (1996) Molecular and cellular aspects of nicotine abuse. Neuron 16:905–908CrossRefPubMedGoogle Scholar
  18. 18.
    Bertrand S, Weiland S, Berkovic SF, Steinlein OK, Bertrand D (1998) Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy. Br J Pharmacol 125:751–760PubMedGoogle Scholar
  19. 19.
    Steinlein OK, Mulley JC, Propping P, Wallace RH, Phillips HA, Sutherland GR, Scheffer IE, Berkovic SF (1995) A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 11:201–203Google Scholar
  20. 20.
    Phillips HA, Favre I, Kirkpatrick M, Zuberi SM, Goudie D, Heron SE, Scheffer IE, Sutherland GR, Berkovic SF, Bertrand D, Mulley JC (2001) CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am J Hum Genet 68:225–231CrossRefPubMedGoogle Scholar
  21. 21.
    Labarca C, Schwarz J, Deshpande P, Schwarz S, Nowak MW, Fonck C, Nashmi R, Kofuji P, Dang H, Shi W, Fidan M, Khakh BS, Chen Z, Bowers BJ, Boulter J, Wehner JM, Lester HA (2001) Point mutant mice with hypersensitive alpha 4 nicotinic receptors show dopaminergic deficits and increased anxiety. Proc Natl Acad Sci U S A 98:2786–2791CrossRefPubMedGoogle Scholar
  22. 22.
    Salas R, Pieri F, Fung B, Dani JA, De Biasi M (2003) Altered anxiety-related responses in mutant mice lacking the beta4 subunit of the nicotinic receptor. J Neurosci 23:6255–6263PubMedGoogle Scholar
  23. 23.
    Marubio LM, Mar Arroyo-Jimenez M del, Cordero-Erausquin M, Lena C, Le Novere N, Kerchove d’Exaerde A de, Huchet M, Damaj MI, Changeux JP (1999) Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 398:805–810CrossRefPubMedGoogle Scholar
  24. 24.
    Pidoplichko VI, Noguchi J, Areola OO, Liang Y, Peterson J, Zhang T, Dani JA (2004) Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction. Learn Mem 11:60–69CrossRefPubMedGoogle Scholar
  25. 25.
    Lena C, Changeux JP (1998) Allosteric nicotinic receptors, human pathologies. J Physiol Paris 92:63–74CrossRefPubMedGoogle Scholar
  26. 26.
    Rust G, Burgunder JM, Lauterburg TE, Cachelin AB (1994) Expression of neuronal nicotinic acetylcholine receptor subunit genes in the rat autonomic nervous system. Eur J Neurosci 6:478–485PubMedGoogle Scholar
  27. 27.
    Xu W, Orr-Urtreger A, Nigro F, Gelber S, Sutcliffe CB, Armstrong D, Patrick JW, Role LW, Beaudet AL, De Biasi M (1999) Multiorgan autonomic dysfunction in mice lacking the beta2 and the beta4 subunits of neuronal nicotinic acetylcholine receptors. J Neurosci 19:9298–9305PubMedGoogle Scholar
  28. 28.
    Wang F, Gerzanich V, Wells GB, Anand R, Peng X, Keyser K, Lindstrom J (1996) Assembly of human neuronal nicotinic receptor alpha5 subunits with alpha3, beta2, and beta4 subunits. J Biol Chem 271:17656–17665CrossRefPubMedGoogle Scholar
  29. 29.
    Chavez-Noriega LE, Crona JH, Washburn MS, Urrutia A, Elliott KJ, Johnson EC (1997) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h alpha 2 beta 2, h alpha 2 beta 4, h alpha 3 beta 2, h alpha 3 beta 4, h alpha 4 beta 2, h alpha 4 beta 4 and h alpha 7 expressed in Xenopus oocytes. J Pharmacol Exp Ther 280:346–356PubMedGoogle Scholar
  30. 30.
    Dineley-Miller K, Patrick J (1992) Gene transcripts for the nicotinic acetylcholine receptor subunit, beta4, are distributed in multiple areas of the rat central nervous system. Brain Res Mol Brain Res 16:339–344CrossRefPubMedGoogle Scholar
  31. 31.
    Quik M, Polonskaya Y, Gillespie A, Jakowec M, Lloyd GK, Langston JW (2000) Localization of nicotinic receptor subunit mRNAs in monkey brain by in situ hybridization. J Comp Neurol 425:58–69CrossRefPubMedGoogle Scholar
  32. 32.
    Rubboli F, Court JA, Sala C, Morris C, Chini B, Perry E, Clementi F (1994) Distribution of nicotinic receptors in the human hippocampus and thalamus. Eur J Neurosci 6:1596–1604PubMedGoogle Scholar
  33. 33.
    Quick MW, Ceballos RM, Kasten M, McIntosh JM, Lester RA (1999) Alpha3beta4 subunit-containing nicotinic receptors dominate function in rat medial habenula neurons. Neuropharmacology 38:769–783CrossRefPubMedGoogle Scholar
  34. 34.
    Klink R, Kerchove A de, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21:1452–1463PubMedGoogle Scholar
  35. 35.
    Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284:314–335PubMedGoogle Scholar
  36. 36.
    Wang N, Orr-Urtreger A, Chapman J, Rabinowitz R, Korczyn AD (2003) Deficiency of nicotinic acetylcholine receptor beta 4 subunit causes autonomic cardiac and intestinal dysfunction. Mol Pharmacol 63:574–580CrossRefPubMedGoogle Scholar
  37. 37.
    Salas R, Cook KD, Bassetto L, De Biasi M (2004) The alpha3 and beta4 nicotinic acetylcholine receptor subunits are necessary for nicotine-induced seizures and hypolocomotion in mice. Neuropharmacology 47:401–407CrossRefPubMedGoogle Scholar
  38. 38.
    Bercovich D, Beaudet AL (2003) Denaturing high-performance liquid chromatography for the detection of mutations and polymorphisms in UBE3A. Genet Test 7:189–194CrossRefPubMedGoogle Scholar
  39. 39.
    Sine SM, Steinbach JH (1984) Agonists block currents through acetylcholine receptor channels. Biophys J 46:277–283PubMedGoogle Scholar
  40. 40.
    Lev-Lehman E, Bercovich D, Xu W, Stockton DW, Beaudet AL (2001) Characterization of the human beta4 nAChR gene and polymorphisms in CHRNA3 and CHRNB4. J Hum Genet 46:362–366CrossRefPubMedGoogle Scholar
  41. 41.
    Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933CrossRefPubMedGoogle Scholar
  42. 42.
    Bertrand D, Picard F, Le Hellard S, Weiland S, Favre I, Phillips H, Bertrand S, Berkovic SF, Malafosse A, Mulley J (2002) How mutations in the nAChRs can cause ADNFLE epilepsy. Epilepsia 43 [Suppl 5]:112–122Google Scholar
  43. 43.
    Revah F, Bertrand D, Galzi JL, Devillers-Thiery A, Mulle C, Hussy N, Bertrand S, Ballivet M, Changeux JP (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–849CrossRefPubMedGoogle Scholar
  44. 44.
    Broide RS, Salas R, Ji D, Paylor R, Patrick JW, Dani JA, De Biasi M (2002) Increased sensitivity to nicotine-induced seizures in mice expressing the L250T alpha 7 nicotinic acetylcholine receptor mutation. Mol Pharmacol 61:695–705CrossRefPubMedGoogle Scholar
  45. 45.
    Sine SM (2002) The nicotinic receptor ligand binding domain. J Neurobiol 53:431–446CrossRefPubMedGoogle Scholar
  46. 46.
    Bouzat C, Gumilar F, Spitzmaul G, Wang HL, Rayes D, Hansen SB, Taylor P, Sine SM (2004) Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature 430:896–900CrossRefPubMedGoogle Scholar
  47. 47.
    Brejc K, Dijk WJ van, Klaassen RV, Schuurmans M, Der Oost J van, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276CrossRefPubMedGoogle Scholar
  48. 48.
    Sine SM, Shen XM, Wang HL, Ohno K, Lee WY, Tsujino A, Brengmann J, Bren N, Vajsar J, Engel AG (2002) Naturally occurring mutations at the acetylcholine receptor binding site independently alter ACh binding and channel gating. J Gen Physiol 120:483–496CrossRefPubMedGoogle Scholar
  49. 49.
    Tamamizu S, Guzman GR, Santiago J, Rojas LV, McNamee MG, Lasalde-Dominicci JA (2000) Functional effects of periodic tryptophan substitutions in the alpha M4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 39:4666–4673CrossRefPubMedGoogle Scholar
  50. 50.
    Lee YH, Li L, Lasalde J, Rojas L, McNamee M, Ortiz-Miranda SI, Pappone P (1994) Mutations in the M4 domain of Torpedo californica acetylcholine receptor dramatically alter ion channel function. Biophys J 66:646–653PubMedGoogle Scholar
  51. 51.
    Peto R, Lopez AD, Boreham J, Thun M, Heath C (1992) Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet 339:1268–1278CrossRefPubMedGoogle Scholar
  52. 52.
    Anderson C, Burns DM (2000) Patterns of adolescent smoking initiation rates by ethnicity and sex. Tob Control 9 [Suppl 2]:II4–II8Google Scholar
  53. 53.
    DiFranza JR, Savageau JA, Fletcher K, Ockene JK, Rigotti NA, McNeill AD, Coleman M, Wood C (2004) Recollections and repercussions of the first inhaled cigarette. Addict Behav 29:261–272CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Yong Liang
    • 1
  • Ramiro Salas
    • 1
  • Lisa Marubio
    • 2
  • Dani Bercovich
    • 3
  • Mariella De Biasi
    • 1
  • Arthur L. Beaudet
    • 2
  • John A. Dani
    • 1
    • 4
    Email author
  1. 1.Department of NeuroscienceBaylor College of MedicineHoustonUSA
  2. 2.Department of Human and Molecular GeneticsBaylor College of MedicineHoustonUSA
  3. 3.Department of Human Molecular GeneticsMigal-Galilee Technology CenterKiryat-ShmonaIsrael
  4. 4.Department of NeuroscienceBaylor College of MedicineHoustonUSA

Personalised recommendations