Journal of Artificial Organs

, Volume 22, Issue 4, pp 276–285 | Cite as

Mathematical evaluation of cardiac beat synchronization control used for a rotary blood pump

  • Daisuke OgawaEmail author
  • Shinji Kobayashi
  • Kenji Yamazaki
  • Tadashi Motomura
  • Takashi Nishimura
  • Junichi Shimamura
  • Tomonori Tsukiya
  • Toshihide Mizuno
  • Yoshiaki Takewa
  • Eisuke Tatsumi
Original Article Artificial Heart (Basic)


We studied a control method of rotary blood pumps (RBPs), which is called as the cardiac beat synchronization (CBS) system. Usually, RBPs operate at constant target rotational speed, meanwhile, the CBS system modulates target speed synchronizing with cardiac beat. We built a computer simulation method to evaluate the CBS system. This simulator acquires a mathematical model of a circulatory system including a RBP and can provide us the theoretical hemodynamics when our control method is applied. We compared theoretical results with experimental ones with the model focusing on both pulsatility and aortic valve (AV) opening interval enhanced by the CBS system. Our simulator could reproduce behavior of the circulatory system whether the RBP is connected or not. Comparison among no RBP, constant assist, systolic assist, and diastolic assist modes indicated that pulsatility is enhanced with systolic assist theoretically. While systolic assist decreased AV opening interval, diastolic assist made it longer than the ones in other control strategies.


Rotary blood pump Synchronization with cardiac beat Pulsatility Simulation 


Compliance with ethical standards

Conflict of interest

D. Ogawa and S. Kobayashi are employed by Sun medical Technology Research Corp. K. Yamazaki serves as a consultant to Sun medical Technology Research Corp. T. Motomura is employed by Evaheart, Inc. Other authors declare that there is no conflict of interest.


  1. 1.
    Umeki A, Nishimura T, Ando M, Takewa Y, Yamazaki K, Kyo S, Ono M, Tsukiya T, Mizuno T, Taenaka Y, Tatsumi E. Alteration of LV end-diastolic volume by controlling the power of the continuous-flow LVAD, so it is synchronized with cardiac beat: development of a native heart load control system (NHLCS). J Artif Organs. 2012;15:128–33.CrossRefGoogle Scholar
  2. 2.
    Arakawa M, Nishimura T, Takewa Y, Umeki A, Ando M, Kishimoto Y, Fujii Y, Kyo S, Adachi H, Tatsumi E. Novel control system to prevent right ventricular failure induced by rotary blood pump. J Artif Organs. 2014;17:135–41.CrossRefGoogle Scholar
  3. 3.
    Arakawa M, Nishimura T, Takewa Y, Umeki A, Ando M, Kishimoto Y, Kishimoto S, Fujii Y, Date K, Kyo S, Adachi H, Tatsumi E. Pulsatile support using a rotary left ventricular assist device with an electrocardiography-synchronized rotational speed control mode for tracking heart rate variability. J Artif Organs. 2016;19:204–7.CrossRefGoogle Scholar
  4. 4.
    Date K, Nishimura T, Takewa Y, Kishimoto S, Arakawa M, Umeki A, Ando M, Mizuno T, Tsukiya T, Ono M, Tatsumi E. Shifting the pulsatility by increasing the change in rotational speed for a rotary LVAD using a native heart load control system. J Artif Organs. 2016;19:315–21.CrossRefGoogle Scholar
  5. 5.
    Naito N, Nishimura T, Iizuka K, Takewa Y, Umeki A, Ando M, Ono M, Tatsumi E. Rotational speed modulation used with continuous-flow left ventricular assist device provides good pulsatility. Interact Cardiovasc Thorac Surg. 2018;26:119–23.CrossRefGoogle Scholar
  6. 6.
    Pirbodaghi T, Weber A, Axiak S, Carrel T, Vandenberghe S. Asymmetric speed modulation of a rotary blood pump affects ventricular unloading. Eur J Cardiothorac Surg. 2013;43:383–8.CrossRefGoogle Scholar
  7. 7.
    Vollkron M, Schima H, Huber L, Wieselthaler G. Interaction of the cardiovascular system with an implanted rotary assist device: simulation study with a refined computer model. Artif Organs. 2002;26:349–59.CrossRefGoogle Scholar
  8. 8.
    Xu L, Fu M. Computer modeling of interactions of an electric motor, circulatory system, and rotary blood pump. ASAIO J. 2000;46:604–11.CrossRefGoogle Scholar
  9. 9.
    Doshi D, Burkhoff D. Cardiovascular simulation of heart failure pathophysiology and therapeutics. J Cardiac Fail. 2016;22:303–11.CrossRefGoogle Scholar
  10. 10.
    Wang Y, Loghmanpour N, Vandenberghe S, Ferreira A, Keller B, Gorcsan J, Antaki J. Simulation of dilated heart failure with continuous flow circulatory support. PLoS ONE. 2014;9:e85234.CrossRefGoogle Scholar
  11. 11.
    Giridharan GA, Skliar M. Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study. Artif Organs. 2006;30:301–7.CrossRefGoogle Scholar
  12. 12.
    Wu Y. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters. ASAIO J. 2009;55:335–9.CrossRefGoogle Scholar
  13. 13.
    Vandenberghe S, Segers P, Meyns B, Verdonck P. Unloading effect of a rotary blood pump assessed by mathematical modeling. Artif Organs. 2003;27:1094–101.CrossRefGoogle Scholar
  14. 14.
    Bozkurt S, Bozkurt S. In-silico evaluation of left ventricular unloading under varying speed continuous flow left ventricular assist device support. Biocybern Biomed Eng. 2017;37:373–87.CrossRefGoogle Scholar
  15. 15.
    Htet ZL, Aye TP, Singhavilai T, Naiyanetr P. Hemodynamics during rotary blood pump support with speed synchronization in heart failure condition: a modelling study. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:3307–10.PubMedGoogle Scholar
  16. 16.
    Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier; 2005.Google Scholar
  17. 17.
    Zhong L, Ghista DN, Ng EY, Lim ST. Passive and active ventricular elastances of the left ventricle. Biomed Eng Online. 2005;4:10.CrossRefGoogle Scholar
  18. 18.
    Moazami N, Fukamachi K, Kobayashi M, Smedira NG, Hoercher KJ, Massiello A, Lee S, Horvath DJ, Starling RC. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J Heart Lung Transplant. 2013;32:1–11.CrossRefGoogle Scholar
  19. 19.
    Burkhoff D, Mirsky I, Suga H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational and basic researchers. Am J Physiol Heart. 2005;289:501–12.CrossRefGoogle Scholar
  20. 20.
    Soucy KG, Koenig SC, Giridharan GA, Sobieski MA, Slaughter MS. Defining pulsatility during continuous-flow ventricular assist device support. J Heart Lung Transplant. 2013;32:581–7.CrossRefGoogle Scholar
  21. 21.
    Rich JD, Burkhoff D. HVAD flow waveform morphologies: theoretical foundation and implications for clinical practice. ASAIO J. 2017;63:526–35.CrossRefGoogle Scholar
  22. 22.
    Vandenberghe S, Segers P, Antaki JF, Meyns B, Verdonck PR. Hemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure. ASAIO J. 2005;51:711–8.CrossRefGoogle Scholar
  23. 23.
    Yamazaki K, Saito S, Kihara S, Tagusari O, Kurosawa H. Completely pulsatile high flow circulatory support with a constant-speed centrifugal blood pump: mechanisms and early clinical observations. Gen Thorac Cardiovasc Surg. 2007;55:158–62.CrossRefGoogle Scholar
  24. 24.
    Imamura T, Kinugawa K, Nitta D, Hatano M, Kinoshita O, Nawata K, Ono M. Advantage of pulsatility in left ventricular reverse remodeling and aortic insufficiency prevention during left ventricular assist device treatment. Circ J. 2015;79:1994–9.CrossRefGoogle Scholar
  25. 25.
    Hatano M, Kinugawa K, Shiga T, Kato N, Endo M, Hisagi M, Nishimura T, Yao A, Hirata Y, Kyo S, Ono M, Nagai R. Less frequent opening of the aortic valve and a continuous flow pump are risk factors for postoperative onset of aortic insufficiency in patients with a left ventricular assist device. Circ J. 2011;75:1147–55.CrossRefGoogle Scholar
  26. 26.
    Rose AG, Park SJ, Bank AJ, Miller LW. Partial aortic valve fusion induced by left ventricular assist device. Ann Thorac Surg. 2000;70:1270–4.CrossRefGoogle Scholar
  27. 27.
    Moazami N, Dembitsky WP, Adamson R, Steffen RJ, Soltesz EG, Starling RC, Fukamachi K. Does pulsatility matter in the era of continuous-flow blood pumps? J Heart Lung Transplant. 2015;34:999–1004.CrossRefGoogle Scholar
  28. 28.
    Saito T, Wassilew K, Gorodetski B, Stein J, Falk V, Krabatsch T, Potapov E. Aortic valve pathology in patients supported by continuous-flow left ventricular assist device. Circ J. 2016;80:1371–7.CrossRefGoogle Scholar
  29. 29.
    Tolpen S, Janmaat J, Reider C, Kallel F, Farrar D, May-Newman K. Programmed speed reduction enables aortic valve opening and increased pulsatility in the LVAD-assisted heart. ASAIO J. 2015;61:540–7.CrossRefGoogle Scholar
  30. 30.
    Bazan O, Ortiz JP. Duration of systole and diastole for hydrodynamic testing of prosthetic heart valves: comparison between ISO 5840 standards and in vivo studies. Braz J Cardiovasc Surg. 2016;31:171–3.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Ising M, Warren S, Sobieski MA, Slaughter MS, Koenig SC, Giridharan GA. Flow modulation algorithms for continuous flow left ventricular assist devices to increase vascular pulsatility: a computer simulation study. Cardiovasc Eng Technol. 2011;2:90–100.CrossRefGoogle Scholar
  32. 32.
    Bozkurt S, van de Vosse FN, Rutten MC. Enhancement of arterial pressure pulsatility by controlling continuous-flow left ventricular assist device flow rate in mock circulatory system. J Med Biol Eng. 2016;36:308–15.CrossRefGoogle Scholar
  33. 33.
    Ising MS, Sobieski MA, Slaughter MS, Koenig SC, Giridharan GA. Feasibility of pump speed modulation for restoring vascular pulsatility with rotary blood pumps. ASAIO J. 2015;61:526–32.CrossRefGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2019

Authors and Affiliations

  • Daisuke Ogawa
    • 1
    Email author
  • Shinji Kobayashi
    • 1
  • Kenji Yamazaki
    • 2
  • Tadashi Motomura
    • 3
  • Takashi Nishimura
    • 4
  • Junichi Shimamura
    • 5
  • Tomonori Tsukiya
    • 5
  • Toshihide Mizuno
    • 5
  • Yoshiaki Takewa
    • 5
  • Eisuke Tatsumi
    • 5
  1. 1.Sun Medical Technology Research Corp.Suwa-cityJapan
  2. 2.Hokkaido Cardiovascular HospitalSapporoJapan
  3. 3.Evaheart Inc.HoustonUSA
  4. 4.Department of Cardiac SurgeryTokyo Metropolitan Geriatric HospitalTokyoJapan
  5. 5.Department of Artificial OrgansNational Cerebral and Cardiovascular Center Research InstituteSuita, OsakaJapan

Personalised recommendations