Advertisement

Journal of Artificial Organs

, Volume 21, Issue 1, pp 86–93 | Cite as

Differences in tissue oxygenation and changes in total hemoglobin signal strength in the brain, liver, and lower-limb muscle during hemodialysis

  • Susumu OokawaraEmail author
  • Kiyonori ItoEmail author
  • Yuichiro Ueda
  • Haruhisa Miyazawa
  • Hideyuki Hayasaka
  • Masaya Kofuji
  • Takayuki Uchida
  • Hiroki Ishii
  • Mitsutoshi Shindo
  • Taisuke Kitano
  • Akinori Aomatsu
  • Keiji Hirai
  • Yoshio Kaku
  • Taro Hoshino
  • Kaoru Tabei
  • Yoshiyuki Morishita
Original Article Artificial Kidney / Dialysis

Abstract

Near-infrared spectroscopy has been used to measure regional saturation of oxygen (rSO2) based on the total hemoglobin (t-Hb) signal strength. To date, few studies have investigated the changes of systemic oxygenation and t-Hb signal strength during hemodialysis (HD). This study aimed to (1) monitor rSO2 and t-Hb signal strength in the brain, liver, and lower-limb muscle during HD and (2) clarify the differences in rSO2 and t-Hb signal strength in each compartment. Fifty-three patients receiving 4-h HD were included and divided into three groups according to the compartments in which tissue oxygenation was measured as follows: brain (n = 44), liver (n = 42), and lower-limb muscle (n = 40). The rSO2 and t-Hb signal strength was monitored using an INVOS 5100c (Covidien Japan, Tokyo, Japan). The rSO2 levels were significantly lower in the brain than in the liver from HD initiation to the end (HD initiation: rSO2 in the brain and liver, 46.5 ± 1.3 and 52.4 ± 1.7%, respectively, p = 0.031). Furthermore, compared to the t-Hb signal strength ratio [value at t (min) during HD/initial value before HD] in the brain during HD, there were significant increases in the liver and lower-limb muscle, respectively. In conclusion, deterioration of cerebral oxygenation was remarkable compared to the hepatic oxygenation in HD patients. Our results, which revealed significant differences among the t-Hb signal strength ratios in the brain, liver, and lower-limb muscle during HD, might reflect the non-uniform body-fluid reduction within systemic tissues induced by ultrafiltration.

Keywords

Body-fluid Hemodialysis Near-infrared spectroscopy Regional saturation of oxygen Total hemoglobin signal strength 

Notes

Acknowledgements

We thank the study participants and our hospital’s clinical dialysis center staff.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Tobias JD. Cerebral oxygenation monitoring: near-infrared spectroscopy. Expert Rev Med Devices. 2006;3:235–43.CrossRefPubMedGoogle Scholar
  2. 2.
    Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004;29:463–87.CrossRefPubMedGoogle Scholar
  3. 3.
    Parnia S, Nasir A, Ahn A, Malik H, Yang J, Zhu J, Dorazi F, Richman P. A feasibility study of cerebral oximetry during in-hospital mechanical and manual cardiopulmonary resuscitation. Crit Care Med. 2014;42:930–3.CrossRefPubMedGoogle Scholar
  4. 4.
    Ono M, Arnaoutakis GJ, Fine DM, Brady K, Easley RB, Zheng Y, Brown C, Katz NM, Grams ME, Hogue CW. Blood pressure excursions below the cerebral autoregulation threshold during cardiac surgery are associated with acute kidney injury. Crit Care Med. 2013;41:464–71.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    McCusker K, Chalafant A, de Foe G, Gunaydin S, Vijay V. Influence of hematocrit and pump prime on cerebral oxygen saturation in on-pump coronary revascularization. Perfusion. 2006;21:149–55.CrossRefPubMedGoogle Scholar
  6. 6.
    Calderon-Arnulphi M, Alaraj A, Amin-Hanjani S, Mantulin WW, Polzonetti CM, Gratton E, Charbel FT. Detection of cerebral ischemia in neurovascular surgery using quantitative frequency-domain near-infrared spectroscopy. J Neurosurg. 2007;106:283–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Boezeman RP, Kelder JC, Waanders FG, Moll FL, de Vries JP. In vivo measurements of regional hemoglobin oxygen saturation values and limb-to-arm ratios of near-infrared spectroscopy for tissue oxygenation monitoring of lower extremities in healthy subjects. Med Devices (Auckl). 2014;8:31–6.Google Scholar
  8. 8.
    Shuller MS, Reisman WM, Kinsey TL, Whitesides TE Jr, Hammerberg EM, Davila MG, Moore TJ. Correlation between muscle oxygenation and compartment pressures in acute compartment syndrome of the leg. J Bone Joint Surg Am. 2010;92:863–70.CrossRefGoogle Scholar
  9. 9.
    Watkins DJ, Besner GE. The role of the intestinal microcirculation in necrotizing enterocolitis. Semin Pediatr Surg. 2013;22:83–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schat TE, Schurink M, van der Laan ME, Hulscher JBF, Hulzebos CV, Bos AF, Kooi EM. Near-infrared spectroscopy to predict the course of necrotizing enterocolitis. PLoS One. 2016;11:e0154710. doi: 10.1371/journal.pone.0154710.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ito K, Ookawara S, Ueda Y, Goto S, Miyazawa H, Yamada H, Kitano T, Shindo M, Kaku Y, Hirai K, Yoshida M, Hoshino T, Nabata A, Mori H, Yoshida I, Kakei M, Tabei K. Factors affecting cerebral oxygenation in hemodialysis patients: cerebral oxygenation associates with pH, hemodialysis duration, serum albumin concentration, and diabetes mellitus. PLoS One. 2015;10:e0117474. doi: 10.1371/journal.pone.0117474.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Miyazawa H, Ookawara S, Ito K, Yanai K, Ishii H, Kitano T, Shindo M, Ueda Y, Kaku Y, Hirai K, Hoshino T, Tabei K, Morishita Y. Factors associating with oxygenation of lower-limb muscle tissue in hemodialysis patients. World J Nephrol. 2016;5:524–30. doi: 10.5527/wjn.v5.i6.524.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Myers D, McGraw M, George M, Mulier K, Beilman G. Tissue hemoglobin index: a non-invasive optical measure of total tissue hemoglobin. Crit Care. 2009;13(suppl 5):S2. doi: 10.1186/cc8000.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ueda S, Nakamiya N, Matsuura K, Shigekawa T, Sano H, Hirokawa E, Shimada H, Suzuki H, Oda M, Yamashita Y, Kishino O, Kuji I, Osaki A, Saeki T. Optical imaging of tumor vascularity associated with proliferation and glucose metabolism in early breast cancer: clinical application of total hemoglobin measurements in the breast. BMC Cancer. 2013;13:514. doi: 10.1186/1471-2407-13-514.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nielsen AL, Thunedborg P, Brinkenfeldt H, Hegbrant J, Jensen HA, Wandrup JH. Assessment of pH and oxygen status during hemodialysis using the arterial blood line in patients with an arteriovenous fistula. Blood Purif. 1999;17:206–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Daugirdas JT. Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol. 1993;4:1205–13.PubMedGoogle Scholar
  17. 17.
    Yoshida I, Ando K, Ando Y, Ookawara S, Suzuki M, Furuya H, Iimura O, Takeda D, Kajiya M, Komada T, Mori H, Tabei K, BVM study Group. A new device to monitor blood volume in hemodialysis patients. Ther Apher Dial. 2010;14:560–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Lemmers PMA, Toet MC, van Bel F. Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics. 2008;121:142–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Hyttel-Sorensen S, Sorensen LC, Riera J, Greisen G. Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm. Biomed Opt Express. 2011;2:3047–57.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schmitz J, Pichler G, Schwaberger B, Urlesberger B, Baik N, Binder C. Feasibility of long-term cerebral and peripheral regional tissue oxygen saturation measurements. Physiol Meas. 2014;35:1349–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Hongo K, Kobayashi S, Okudera H, Hokama M, Nakagawa F. Noninvasive cerebral optical spectroscopy: depth-resolved measurements of cerebral haemodynamics using indocyanine green. Neuro Res. 1995;17:89–93.CrossRefGoogle Scholar
  22. 22.
    Maslehaty H, Krause-Tilz U, Petridis AK, Barth H, Mehdorn HM. Continuous measurement of cerebral oxygenation with near-infrared spectroscopy after spontaneous subarachnoid hemorrhage. ISRN Neurol 2012;907187. doi: 10.5402/2012/907187.
  23. 23.
    Ookawara S, Suzuki M, Yahagi T, Saitou M, Tabei K. Effect of postural change on blood volume in long-term hemodialysis patients. Nephron. 2001;87:27–34.CrossRefPubMedGoogle Scholar
  24. 24.
    Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR. Validation of near-infrared spectroscopy in humans. J Apply Physiol. 1994;77:2740–7.CrossRefGoogle Scholar
  25. 25.
    Song JG, Jeon SM, Shin WJ, Jun IG, Shin K, Huh IY, Kim YK, Hwang GS. Laboratory variables associated with low near-infrared cerebral oxygen saturation in icteric patients before liver transplantation surgery. Anesth Analg. 2011;112:1347–52.CrossRefPubMedGoogle Scholar
  26. 26.
    Goto M, Kawano S, Yoshihara H, Takei Y, Hijioka T, Fukui H, Matsunaga T, Oshita M, Kashiwagi T, Fusamoto H. Hepatic tissue oxygenation as a predictive indicator of ischemia-reperfusion liver injury. Hepatology. 1992;15:432–7.CrossRefPubMedGoogle Scholar
  27. 27.
    El-Desoky AE, Jiao LR, Havlik R, Habib N, Davidson BR, Seifalian AM. Measurement of hepatic tissue hypoxia using near infrared spectroscopy: comparison with hepatic vein oxygen partial pressure. Eur Surn Res. 2000;32:207–14.CrossRefGoogle Scholar
  28. 28.
    Saad WEA. Nonocclusive hepatic artery hypoperfusion syndrome (splenic steal syndrome) in liver transplant recipients. Semin Intervent Radiol. 2012;29:140–6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bailey SM, Hendrics-Munoz KD, Mally P. Splanchnic-cerebral oxygenation ratio as a marker of preterm infant blood transfusion needs. Transfusion. 2012;52:252–60.CrossRefPubMedGoogle Scholar
  30. 30.
    Bailey SM, Hendrics-Munoz KD, Mally P. Splanchnic-cerebral oxygenation ratio (SCOR) values in healthy term infants as measured by near-infrared spectroscopy. Pediatr Surg Int. 2013;29:591–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Dantsker DR. The gastrointestinal tract: the canary of the body? JAMA. 1993;270:1247–8.CrossRefGoogle Scholar
  32. 32.
    Taylor J, Mulier K, Myers D, Beilman GJ. Use of infrared spectroscopy in early determination of irreversible hemorrhagic shock. J Trauma. 2005;58:119–1125.CrossRefGoogle Scholar
  33. 33.
    Daugirdas JT. Pathophysiology of dialysis hypotension: an update. Am J Kidney Dis. 2001;38:S11–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Dasselaar JJ, van der Sande FM, Franssen CFM. Critical evaluation of blood volume measurements during hemodialysis. Blood Purif. 2012;33:177–82.CrossRefPubMedGoogle Scholar
  35. 35.
    Ishida I, Hirakata H, Sugimori H, Omae T, Hirakata E, Ibayashi S, Kubo M, Fujisawa M. Hemodialysis causes severe orthostatic reduction in cerebral blood flow velocity in diabetic patients. Am J Kidney Dis. 1999;34:1096–104.CrossRefPubMedGoogle Scholar
  36. 36.
    Mizumasa T, Hirakata H, Yoshimitsu T, Hirakata E, Kubo M, Kashiwagi M, Tanaka H, Kanai H, Fujimi S, Iida M. Dialysis-related hypotension as a cause for progressive frontal lobe atrophy in chronic hemodialysis patients: a 3-year prospective study. Nephron Clin Pract. 2004;97:c23–30.CrossRefPubMedGoogle Scholar
  37. 37.
    Miyazawa H, Ookawara S, Tabei K. Aggravation of cerebral oxygenation due to intradialytic hypotension induced by blood volume reduction during hemodialysis: a case report. Ther Apher Dial. 2015;19:525–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Sachdev PS, Brodaty H, Valenzuela MJ, Lorentz L, Looi JC, Wen W, Zagami AS. The neuropsychological profile of vascular cognitive impairment in stroke and TIA patients. Neurology. 2004;62:912–9.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2017

Authors and Affiliations

  • Susumu Ookawara
    • 1
    Email author return OK on get
  • Kiyonori Ito
    • 1
    Email author
  • Yuichiro Ueda
    • 1
  • Haruhisa Miyazawa
    • 1
  • Hideyuki Hayasaka
    • 2
  • Masaya Kofuji
    • 2
  • Takayuki Uchida
    • 2
  • Hiroki Ishii
    • 1
  • Mitsutoshi Shindo
    • 1
  • Taisuke Kitano
    • 1
  • Akinori Aomatsu
    • 1
  • Keiji Hirai
    • 1
  • Yoshio Kaku
    • 1
  • Taro Hoshino
    • 1
  • Kaoru Tabei
    • 3
  • Yoshiyuki Morishita
    • 1
  1. 1.Division of Nephrology, Department of First Integrated Medicine, Saitama Medical CenterJichi Medical UniversitySaitamaJapan
  2. 2.Department of Clinical Engineering, Saitama Medical CenterJichi Medical UniversitySaitamaJapan
  3. 3.Minami-Uonuma City HospitalNiigataJapan

Personalised recommendations