Advertisement

Journal of Artificial Organs

, Volume 19, Issue 2, pp 105–113 | Cite as

The use of a numerical model to simulate the cavo-pulmonary assistance in Fontan circulation: a preliminary verification

  • Arianna Di Molfetta
  • Antonio Amodeo
  • Libera Fresiello
  • Sergio Filippelli
  • Mara Pilati
  • Roberta Iacobelli
  • Rachele Adorisio
  • Dionisio Colella
  • Gianfranco Ferrari
Original Article Artificial Heart (Basic)

Abstract

The lack of an established experience on the use of VAD for the cavo-pulmonary assistance leads to the need of dedicated VADs development and animal experiments. A dedicated numerical model could support clinical and experimental strategies design and new VADs testing. The aim of this work is to perform a preliminary verification of a lumped parameter model of the cardiovascular system to simulate Fontan physiology and the effect of cavo-pulmonary assistance. Literature data of 4 pigs were used to simulate animals’ baseline, and then the model was tested in simulating Fontan circulation and cavo-pulmonary-assisted condition comparing the simulation outcome (Sim) with measured literature data (Me). The results show that the numerical model can well reproduce experimental data in all three conditions (baseline, Fontan and assisted Fontan) [cardiac output (l/min): Me = 2.8 ± 1.7, Sim = 2.8 ± 1.8; ejection fraction (%): Me = 57 ± 17, Sim = 54 ± 17; arterial systemic pressure (mmHg): Me = 41.8 ± 18.6, Sim = 43.8 ± 18.1; pulmonary arterial pressure (mmHg): Me = 15.4 ± 8.9, Sim = 17.7 ± 9.9; caval pressure (mmHg): Me = 6.8 ± 4.1, Sim = 7 ± 4.6]. Systolic elastance, arterial systemic and arterial pulmonary resistances increase (10, 69, and 100 %) passing from the biventricular circulation to the Fontan physiology and then decrease (21, 39, and 50 %) once the VAD was implanted. The ventricular external work decreases (71 %) passing from the biventricular circulation to the Fontan physiology and it increases three times after the VAD implantation in parallel with the VAD power consumption. A numerical model could support clinicians in an innovative and challenging field as the use of VAD to assist the Fontan physiology and it could be helpful to personalize the VAD insertion on the base of ventricular systo-diastolic function, circulatory parameters and energetic variables.

Keywords

Fontan VAD Lumped parameter model 

Notes

Acknowledgments

This work was supported by CONAD. The authors declare that they have no conflict of interest.

References

  1. 1.
    Rossano JW, Woods RK, Berger S, Gaynor JW, Ghanayem N, Morales DL, Ravishankar C, Mitchell ME, Shah TK, Mahr C, Tweddell JS, Adachi I, Zangwill S, Wearden PD, Icenogle TB, Jaquiss RD, Rychik J. Mechanical support as failure intervention in patients with cavopulmonary a hunts (MFICS): rationale and aims of a new registry of mechanical circulatory support in single ventricle patients. Congenit Heart Dis. 2013;8(3):182–6.CrossRefPubMedGoogle Scholar
  2. 2.
    VanderPluym C, Urschel S, Buchholz H. Advanced therapies for congenital heart disease: ventricular assist devices and heart transplantation. Can J Cardiol. 2013;29:796–802.CrossRefPubMedGoogle Scholar
  3. 3.
    Wang D, Plunkett M, Gao G, Zhou X, Ballard-Croft C, Reda H, Zwischenberger JB. A practical and less invasive total cavopulmonary connection in sheep model. ASAIO J. 2014;60:178–82.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Haggerty CM, Fynn-Thompson F, McElhinney DB, Valente AM, Saikrishnan N, Del Nido PJ, Yoganathan AP. Experimental and numeric investigation of Impella pumps as cavopulmonary assistance for a failing Fontan. J Thorac Cardiovasc Surg. 2012;144:563–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Boni L, Sasaki T, Ferrier WT, Yeung JT, Reichenbach SH, Riemer RK, Reinhartz O. Challenges in long term mechanical support of fontan circulation in sheep. ASAIO J. 2012;58:60–4.CrossRefPubMedGoogle Scholar
  6. 6.
    Tsuda S, Sasaki T, Maeda K, Riemer RK, Reichenbach SH, Reinhartz O. Recovery during mid-term mechanical support of Fontan circulation in sheep. ASAIO J. 2009;55:406–11.CrossRefPubMedGoogle Scholar
  7. 7.
    Derk G, Laks H, Biniwale R, Patel S, De LaCruz K, Mazor E, Williams R, Valdovinos J, Levi DS, Reardon L, Aboulhosn J. Novel techniques of mechanical circulatory support for the right heart and Fontan circulation. Int J Cardiol. 2014;176(3):828–32.CrossRefPubMedGoogle Scholar
  8. 8.
    Giridharan GA, Ising M, Sobieski MA, Koenig SC, Chen J, Frankel S, Rodefeld MD. Cavopulmonary assist for the failing fontan circulation: impact of ventricular function on mechanical support strategy. ASAIO J. 2014;60:707–15.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sinha P, Deutsch N, Ratnayaka K, Lederman R, He D, Nuszkowski M, Montague E, Mikesell G, Ishibashi N, Zurakowski D, Jonas R. Effect of mechanical assistance of systemic ventricle in single ventricle circulation with cavopulmonary connection. J Thorac Cardiovasc Surg. 2014;147:1271–5.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Merklinger SL, Honjo O, Al-Radi OO, Poe J, Wang J, Oka N, Van Arsdell GS. Primary in-series palliation of hypoplastic left heart syndrome with mechanical lung assist in neonatal pigs. ASAIO J. 2009;55:620–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Pekkan K, Frakes D, De Zelicourt D, Lucas CW, Parks WJ, Yoganathan AP. Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped parameter model. ASAIO J. 2005;51:618–28.CrossRefPubMedGoogle Scholar
  12. 12.
    Valdovinos J, Shkolyar E, Carman GP, Levi DS. In vitro evaluation of an external compression device for fontan mechanical assistance. Artif Organs. 2014;38(3):199–207.CrossRefPubMedGoogle Scholar
  13. 13.
    Yamada A, Shiraishi Y, Miura H, Yambe T, Omran MH, Shiga T, Tsuboko Y, Homma D, Yamagishi M. Peristaltic hemodynamics of a new pediatric circulatory assist system for Fontan circulation using shape memory alloy fibers. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:683–6.PubMedGoogle Scholar
  14. 14.
    Throckmorton AL, Lopez-Isaza S, Moskowitz W. Dual pump support in the inferior and superior vena cavae of a patient specific fontan physiology. Artif Organs. 2013;37(6):513–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Di Molfetta A, Amodeo A, Fresiello L, Trivella MG, Iacobelli R, Pilati M, Ferrari G. Simulation of ventricular, cavo-pulmonary, and biventricular ventricular assist devices in failing Fontan. Artif Organs. 2015;39(7):550–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Sagawa K, Maughan L, Suga H, Sunagawa H. Cardiac contraction and the Pressure-Volume relationships. New York: Oxford University Press; 1988.Google Scholar
  17. 17.
    Di Molfetta A, Santini L, Forleo GB, Minni V, Mafhouz K, Della Rocca DG, Fresiello L, Romeo F, Ferrari G. Towards a personalized and dynamic CRT-D. A computational cardiovascular model dedicated to therapy optimization. Methods Inf Med. 2012;51(6):495–506.CrossRefPubMedGoogle Scholar
  18. 18.
    Magder S. Starling Resistor versus compliance. Which explains the Zero-Flow Pressure of a dynamic arterial pressure-flow relation? Circ Res. 1990;67(1):209–20.CrossRefPubMedGoogle Scholar
  19. 19.
    Kilik A, Nolan TDC, Li T, Yankey GK, Prastein DJ, Cheng G, Jarvik RK, Wu ZJ, Griffith BP. Early in vivo experience with the Pediatric Jarvik 2000 Heart. ASAIO J. 2007;53(3):374–8.CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Di Molfetta A, Jacobs S, Fresiello L, Verbelen T, Trivella MG, Meyns B, Ferrari G. Simulation of apical and atrio-aortic VAD in patients with transposition or congenitally corrected transposition of the great arteries. Int J Artif Organs. 2014;37(1):58–70.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2015

Authors and Affiliations

  • Arianna Di Molfetta
    • 1
  • Antonio Amodeo
    • 1
  • Libera Fresiello
    • 2
  • Sergio Filippelli
    • 1
  • Mara Pilati
    • 1
  • Roberta Iacobelli
    • 1
  • Rachele Adorisio
    • 1
  • Dionisio Colella
    • 3
  • Gianfranco Ferrari
    • 2
  1. 1.Department of Pediatric Cardiology and CardiosurgeryPediatric Hospital Bambino GesùRomeItaly
  2. 2.Institute of Clinical Physiology, CNRPisaItaly
  3. 3.Cardiac Surgery Intensive Care UnitUniversity of Tor VergataRomeItaly

Personalised recommendations