Journal of Artificial Organs

, Volume 18, Issue 1, pp 95–98 | Cite as

Minimally invasive implantation of an extracorporeal membrane oxygenation circuit used as a temporary left ventricular assist device: a new concept for bridging to permanent cardiac support

  • Shunsuke Saito
  • Bernhard Fleischer
  • Christoph Maeß
  • Hassina Baraki
  • Ingo Kutschka
Case Report Artificial Heart (Clinical)


The implantation of cardiac assist devices is associated with poor outcome in patients with multiple organ failure and unknown neurologic status. Therefore, temporary left ventricular assist devices (LVAD) using, for example, extracorporeal centrifugal pumps may provide the chance to further evaluate the patient’s clinical course and a potential qualification for implantable LVAD therapy. On the other hand, a main disadvantage of the temporary LVAD implantation is the need for redo surgery, increasing the risk of the final LVAD Implantation. To minimize this drawback of the temporary LVAD implantation, we implanted the temporary LVAD using a minimally invasive technique. The operation was done without cardiopulmonary bypass support, and the temporary LVAD was implanted through upper hemisternotomy and left anterior mini-thoracotomy. The patient recovered from multiple organ failure and was successfully bridged to a permanent LVAD therapy.


Heart failure Left ventricular assist device Bridge to bridge Bridge to decision Extracorporeal membrane oxygenation 


Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33:1787–847.CrossRefPubMedGoogle Scholar
  2. 2.
    Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, Baldwin JT, Young JB. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transpl. 2013;32:141–56.CrossRefGoogle Scholar
  3. 3.
    John R, Liao K, Lietz K, Kamdar F, Colvin-Adams M, Boyle A, Miller L, Joyce L. Experience with the Levitronix CentriMag circulatory support system as a bridge to decision in patients with refractory acute cardiogenic shock and multisystem organ failure. J Thorac Cardiovasc Surg. 2007;134:351–8.CrossRefPubMedGoogle Scholar
  4. 4.
    De Robertis F, Birks EJ, Rogers P, Dreyfus G, Repper JR, Khaghani A. Clinical performance with the levitronix centrimag short-term ventricular assist device. J Heart Lung Transpl. 2006;25:181–6.CrossRefGoogle Scholar
  5. 5.
    De Robertis F, Rogers P, Amrani M, Petrou M, Pepper JR, Bahrami T, Dreyfus GD, Khaghani A, Birks EJ. Bridge to decision using the levitronix centrimag short-term Ventricular assist device. J Heart Lung Transpl. 2008;27:474–8.CrossRefGoogle Scholar
  6. 6.
    Loforte A, Potapov E, Krabatsch T, Musci M, Weng Y, Pasic M, Hetzer R. Levitronix centrimag to Berlin heart excor: a “bridge to bridge” solusion in refractory cardiogenic shock. ASAIO J. 2009;55:465–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Vieselthaler GM, O’Driscoll G, Jansz P, Khaghani A, Streuber M. Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J Heart Lung Transpl. 2010;29:1218–25.CrossRefGoogle Scholar
  8. 8.
    Mihaljevic T, Cohn LH, Unic D, Aranki SF, Couper GS, Byrne JG. One thousand minimally invasive valve operations: early and late results. Ann Surg. 2004;240:529–34 discussion 34.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Cohn LH, Adams DH, Couper GS, Bichell DP. Minimally invasive aortic valve replacement. Semin Thorac Cardiovasc Surg. 1997;9:331–6.PubMedGoogle Scholar
  10. 10.
    Schmitto JD, Molitoris U, Haverich A, Strueber M. Implantation of a centrifugal pump as a left ventricular assist device through a novel, minimized approach: upper hemisternotomy combined with anterolateral thoracotomy. J Thorac Cardiovasc Surg. 2012;143:511–3.CrossRefPubMedGoogle Scholar
  11. 11.
    Haberl T, Riebandt J, Mahr S, Laufer G, Rajek A, Schima H, Zimpfer D. Viennese approach to minimize the invasiveness of ventricular assist device implantation. Eur J Cardiothorac Surg. 2014 Mar 12. [Epub ahead of print] PMID: 24623170, doi: 10.1093/ejcts/ezu051.
  12. 12.
    Burger W, Straube M, Behne M, Sarai K, Beyersdorf F, Eckel L, et al. Role of pericardial constraint for right ventricular function in humans. Chest. 1995;107:46–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Unsworth B, Casula RP, Kyriacou AA, Yadav H, Chukwuemeka A, Cherian A, et al. The right ventricular annular velocity reduction caused by coronary artery bypass graft surgery occurs at the moment of pericardial incision. Am Heart J. 2010;159:314–22.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Saito S, Sakaguchi T, Miyagawa S, Nishi H, Yoshikawa Y, Fukushima S, Daimon T, Sawa Y. Recovery of right heart function with temporary right ventricular assist using a centrifugal pump in patients with severe biventricular failure. J Heart Lung Transpl. 2012;31:858–64.CrossRefGoogle Scholar
  15. 15.
    Takayama H, Naka Y, Kodali SK, Vincent JA, Addonizio LJ, Jorde UP, Williams MR. A novel approach to percutaneous right-ventricular mechanical support. Eur J Cardiothorac Surg. 2012;41:423–6.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2014

Authors and Affiliations

  • Shunsuke Saito
    • 1
  • Bernhard Fleischer
    • 1
  • Christoph Maeß
    • 1
  • Hassina Baraki
    • 1
  • Ingo Kutschka
    • 1
  1. 1.Department of Cardiac and Thoracic SurgeryOtto-von-Guericke-University MagdeburgMagdeburgGermany

Personalised recommendations