Journal of Artificial Organs

, Volume 15, Issue 1, pp 26–31 | Cite as

Regeneration of extrahepatic bile ducts by tissue engineering with a bioabsorbable polymer

  • Mitsuo Miyazawa
  • Masayasu Aikawa
  • Katsuya Okada
  • Yasuko Toshimitsu
  • Kojun Okamoto
  • Isamu Koyama
  • Yoshito Ikada
Minireview

Abstract

With the widespread adoption of laparoscopic cholecystectomy and living-donor liver transplantation in recent years, complications involving the biliary system, stenosis in particular, are increasing. Various invasive and non-invasive techniques are now available for the treatment of biliary stenosis, but all are compromised by a high risk of recurrence and other problems. As a potential solution, our group has developed a bioabsorbable polymer (BAP) tube for implantation as a bypass graft. In the study reported here, we implanted this BAP tube and confirmed bile duct regeneration at the graft site after the tube had been degraded and absorbed into the body. We briefly describe our findings on extrahepatic biliary tissue regeneration, focusing on the possibility of its clinical application. This artificial bile duct may promote the development of novel treatments for biliary disease.

Keywords

Artificial bile duct Tissue engineering Bioabsorbable polymer Bile duct regeneration 

References

  1. 1.
    Ammori BJ, Joseph S, Attia M, Lodge JP. Biliary strictures complicating pancreaticoduodenectomy. Int J Pancreatol. 2000;28:15.PubMedCrossRefGoogle Scholar
  2. 2.
    Egawa H, Inomata Y, Uemoto S, Asonuma K, Kiuchi T, Fujita S, Hayashi M, Matamoros MA, Itou K, Tanaka K. Biliary anastomotic complications in 400 living related liver transplantations. World J Surg. 2001;25:1300.PubMedCrossRefGoogle Scholar
  3. 3.
    Wojcicki M, Milkiewicz P, Silva M. Biliary tract complications after liver transplantation: a review. Dig Surg. 2008;25:245–57.PubMedCrossRefGoogle Scholar
  4. 4.
    Maheshwari A, Maley W, Li Z, Thuluvath PJ. Biliary complications and outcomes of liver transplantation from donors after cardiac death. Liver Transpl. 2007;13:1645–53.PubMedCrossRefGoogle Scholar
  5. 5.
    Nishida S, Nakamura N, Kadono J, Komokata T, Sakata R, Madariaga JR, Tzakis AG. Intrahepatic biliary strictures after liver transplantation. J Hepatobiliary Pancreat Surg. 2006;13:511–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Sugawara Y, Makuuchi M, Takayama T, Imamura H, Dowaki S, Mizuta K, Kawarasaki H, Hashizume K. Small-for-size grafts in living-related liver transplantation. J Am Coll Surg. 2001;192:510.PubMedCrossRefGoogle Scholar
  7. 7.
    Halme L, Hockerstedt K, Lautenschlager I. Cytomegalovirus infection and development of biliary complications after liver transplantation. Transplantation. 2003;75:1853.PubMedCrossRefGoogle Scholar
  8. 8.
    Miyazawa M, Torii T, Toshimitsu Y, Okada K, Koyama I, Ikada Y. A tissue-engineered artificial bile duct grown to resemble the native bile duct. Am J Transplant. 2005;5:1541–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Shimono K, Nose Y. The need to develop artificial bile ducts. Artif Organs. 1995;19:115.PubMedCrossRefGoogle Scholar
  10. 10.
    Xu J, Sun S, Zhang Q, Chen J, Wu L, Liu W, Guo G. Experiment for a polyurethane replacement of the common bile duct. Chin Med J (Engl). 1998;111:86.Google Scholar
  11. 11.
    Rosen M, Ponsky J, Petras R, Fanning A, Brody F, Duperier F. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Surgery. 2002;132:480.PubMedCrossRefGoogle Scholar
  12. 12.
    Teebken OE, Haverich A. Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg. 2002;23:475.PubMedCrossRefGoogle Scholar
  13. 13.
    Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344:532.PubMedCrossRefGoogle Scholar
  14. 14.
    Kaihara S, Kim S, Benvenuto M, Kim BS, Mooney DJ, Tanaka K, Vacanti JP. End-to-end anastomosis between tissue-engineered intestine and native small bowel. Tissue Eng. 1999;5:339.PubMedCrossRefGoogle Scholar
  15. 15.
    Perez A, Grikscheit TC, Blumberg RS, Ashley SW, Vacanti JP. Tissue-engineered small intestine: ontogeny of the immune system. Transplantation. 2002;74:619.PubMedCrossRefGoogle Scholar
  16. 16.
    Ishizaki Y, Bandai Y, Shimomura K, Idezuki Y, Makuuchi M. Healing process of sutureless choledochojejunostomy in an experimental model. Br J Surg. 1995;82:1118–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Watanabe M, Shin’oka T, Tohyama S, Hibino N, Konuma T, Matsumura G, Kosaka Y, Ishida T, Imai Y, Yamakawa M, Ikada Y, Morita S. Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng. 2001;7:429–39.PubMedCrossRefGoogle Scholar
  18. 18.
    Noishiki Y, Tomizawa Y, Yamane Y, Matsumoto A. Autocrine angiogenic vascular prosthesis with bone marrow transplantation. Nat Med. 1996;2:90–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Bhattacharya V, McSweeney PA, Shi Q, Bruno B, Ishida A, Nash R, Storb RF, Sauvage LR, Hammond WP, Wu MH. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34(+) bone marrow cells. Blood. 2000;95:581–5.PubMedGoogle Scholar
  20. 20.
    Dalakas E, Newsome PN, Boyle S, Brown R, Pryde A, McCall S, Hayes PC, Bickmore WA, Harrison DJ, Plevris JN. Bone marrow stem cells contribute to alcohol liver fibrosis in humans. Stem Cells Dev. 2010;19:1417–25.PubMedCrossRefGoogle Scholar
  21. 21.
    Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol. 2004;6:532–9.Google Scholar
  22. 22.
    Oh SH, Witek RP, Bae SH, Zheng D, Jung Y, Piscaglia AC, Petersen BE. Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Gastroenterology. 2007;132:1077–87.PubMedCrossRefGoogle Scholar
  23. 23.
    Tabibian JH, Asham EH, Han S, Saab S, Tong MJ, Goldstein L, Busuttil RW, Durazo FA. Endoscopic treatment of postorthotopic liver transplantation anastomotic biliary strictures with maximal stent therapy (with video). Gastrointest Endosc. 2010;71:505–12.PubMedCrossRefGoogle Scholar
  24. 24.
    Pottakkat B, Vijayahari R, Prakash A, Singh RK, Behari A, Kumar A, Kapoor VK, Saxena R. Factors predicting failure following high bilio-enteric anastomosis for post-cholecystectomy benign biliary strictures. J Gastrointest Surg. 2010;14:1389–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Cantwell CP, Pena CS, Gervais DA, Hahn PF, Dawson SL, Mueller PR. Thirty years’ experience with balloon dilation of benign postoperative biliary strictures: long-term outcomes. Radiology. 2008;249:1050–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Sikora SS, Srikanth G, Agrawal V, Gupta RK, Kumar A, Saxena R, Kapoor VK. Liver histology in benign biliary stricture: fibrosis to cirrhosis… and reversal? J Gastroenterol Hepatol. 2008;23:1879–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Corvera CU, Blumgart LH, Darvishian F, Klimstra DS, DeMatteo R, Fong Y, D’Angelica M, Jarnagin WR. Clinical and pathologic features of proximal biliary strictures masquerading as hilar cholangiocarcinoma. J Am Coll Surg. 2005;201:862–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Lillemoe KD, Melton GB, Cameron JL, Pitt HA, Campbell KA, Talamini MA, Sauter PA, Coleman J, Yeo CJ. Postoperative bile duct strictures: management and outcome in the 1990 s. Ann Surg. 2000;232:430–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Shah SA, Grant DR, McGilvray ID, Greig PD, Selzner M, Lilly LB, Girgrah N, Levy GA, Cattral MS. Biliary strictures in 130 consecutive right lobe living donor liver transplant recipients: results of a Western center. Am J Transplant. 2007;7:161–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Judah JR, Draganov PV. Endoscopic therapy of benign biliary strictures. World J Gastroenterol. 2007;13:3531–9.PubMedGoogle Scholar
  31. 31.
    Lillemoe KD, Pitt HA, Cameron JL. Current management of benign bile duct strictures. Adv Surg. 1992;25:119–74.PubMedGoogle Scholar
  32. 32.
    Aikawa M, Miyazawa M, Okamoto K, Toshimitsu Y, Torii T, Okada K, Akimoto N, Ohtani Y, Koyama I, Yoshito I. A novel treatment for bile duct injury with a tissue-engineered bioabsorbable polymer patch. Surgery. 2010;147:575–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Tocchi A, Mazzoni G, Liotta G, Lepre L, Cassini D, Miccini M. Late development of bile duct cancer in patients who had biliary-enteric drainage for benign disease: a follow-up study of more than 1, 000 patients. Ann Surg. 2001;234:210–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Bettschart V, Clayton RA, Parks RW, Garden OJ, Bellamy CO. Cholangiocarcinoma arising after biliary-enteric drainage procedures for benign disease. Gut. 2002;51:128–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Herba MJ, Casola G, Bret PM, Lough J, Hampson LG. Cholangiocarcinoma as a late complication of choledochoenteric anastomoses. AJR Am J Roentgenol. 1986;147:513–5.PubMedGoogle Scholar
  36. 36.
    Gouma DJ, Konsten J, Soeters PB, Von Meyenfeldt M, Obertop H. Long-term follow-up after choledochojejunostomy for bile duct stones with complex clearance of the bile duct. Br J Surg. 1989;76:451–3.PubMedCrossRefGoogle Scholar
  37. 37.
    Maeda A, Yokoi S, Kunou T, Saeki S, Niinomi N, Uesaka K. Bile duct cancer developing 21 years after choledochoduodenostomy. Dig Surg. 2003;20:331–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Aikawa M, Miyazawa M, Okada K, Toshimitsu Y, Okamoto K, Akimoto N, Koyama I, Ikada Y. Development of a novel reflux-free bilioenteric anastomosis procedure by using a bioabsorbable polymer tube. J Hepatobiliary Pancreat Sci. 2010;17:284–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Sakai Y, Tsuyuguchi T, Ishihara T, Yukisawa S, Sugiyama H, Miyakawa K, Kuroda Y, Yamaguchi T, Ozawa S, Yokosuka O. Long-term prognosis of patients with endoscopically treated postoperative bile duct stricture and bile duct stricture due to chronic pancreatitis. J Gastroenterol Hepatol. 2009;24:1191–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Roumilhac D, Poyet G, Sergent G, Declerck N, Karoui M, Mathurin P, Ernst O, Paris JC, Gambiez L, Pruvot FR. Long-term results of percutaneous management for anastomotic biliary stricture after orthotopic liver transplantation. Liver Transpl. 2003;9:394–400.PubMedCrossRefGoogle Scholar
  41. 41.
    Miyazawa M, Aikawa M, Okada K, Torii T, Otani Y, Koyama I. Development of bioabsorbable biliary tract stens for treatment of benign biliary stenosis. Jpn J Gastroenterol Surg. 2007;40:1548.Google Scholar
  42. 42.
    Kasuya K, Shimazu M, Abe Y, Kikuchi S, Itoi T, Ikada Y, Aoki T, Tsuchida A. A newly developed degradable stent for pancreaticojejunostomy after pancreatoduodenectomy. Int Surg. 2010;95:247–56.PubMedGoogle Scholar
  43. 43.
    Bandura WP, Arbulu A. Experimental replacement of the common bile duct with teflon graft. Am Surg. 1961;27:518–24.PubMedGoogle Scholar
  44. 44.
    Gomez NA, Alvarez LR, Mite A, Andrade JP, Alvarez JR, Vargas PE, Tomala NE, Vivas AF, Zapatier JA. Repair of bile duct injuries with Gore-Tex vascular grafts: experimental study in dogs. J Gastrointest Surg. 2002;6:116–20.PubMedCrossRefGoogle Scholar
  45. 45.
    Christensen M, Laursen HB, Rokkjaer M, Jensen PF, Yasuda Y, Mortensen FV. Reconstruction of the common bile duct by a vascular prosthetic graft: an experimental study in pigs. J Hepatobiliary Pancreat Surg. 2005;12:231–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Mendelowitz DS, Beal JM. Expanded polytetrafluoroethylene in reconstruction of the canine biliary system. Am J Surg. 1982;143:221–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Bottger T, Mann B, Pickel B, Weber W, Sorger K, Junginger T. Animal experiment studies of pedicled small intestine transplantation as partial extrahepatic bile duct replacement. Langenbecks Arch Chir. 1991;376:77–84.PubMedCrossRefGoogle Scholar
  48. 48.
    Belzer FO, Watts JM, Ross HB, Dunphy JE. Auto-reconstruction of the common bile duct after venous patch graft. Ann Surg. 1965;162:346–55.PubMedCrossRefGoogle Scholar
  49. 49.
    Aydin M, Bakir B, Kosem M, Kisli E, Genccelep M. Biliary tract reconstruction with autologous rectus sheath graft—an experimental study. Hepatogastroenterology. 2005;52:1019–22.PubMedGoogle Scholar
  50. 50.
    Sedgwick CE. Reconstruction of the common bile duct with a free ureteral graft; an experimental study. Surg Gynecol Obstet. 1951;92:571–3.PubMedGoogle Scholar
  51. 51.
    Gomez NA, Zapatier JA, Vargas PE. Re: “Small intestinal submucosa as a bioscaffold for biliary tract regeneration”. Surgery. 2004;135:460.PubMedCrossRefGoogle Scholar
  52. 52.
    El-Assmy A, Hafez AT, El-Sherbiny MT, El-Hamid MA, Mohsen T, Nour EM, Bazeed M. Use of single layer small intestinal submucosa for long segment ureteral replacement: a pilot study. J Urol. 2004;171:1939–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Paradis K, Langford G, Long Z, Heneine W, Sandstrom P, Switzer WM, Chapman LE, Lockey C, Onions D, Otto E. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science. 1999;285:1236–41.PubMedCrossRefGoogle Scholar
  54. 54.
    Fishman JA, Patience C. Xenotransplantation: infectious risk revisited. Am J Transplant. 2004;4:1383–90.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2011

Authors and Affiliations

  • Mitsuo Miyazawa
    • 1
  • Masayasu Aikawa
    • 1
  • Katsuya Okada
    • 1
  • Yasuko Toshimitsu
    • 1
  • Kojun Okamoto
    • 1
  • Isamu Koyama
    • 1
  • Yoshito Ikada
    • 2
  1. 1.Department of Surgery, Gastrointestinal CenterSaitama Medical University International Medical CenterHidakaJapan
  2. 2.Division of Life ScienceNara Medical UniversityNaraJapan

Personalised recommendations