Advertisement

Journal of Artificial Organs

, Volume 12, Issue 3, pp 206–209 | Cite as

Artificial vision by direct optic nerve electrode (AV-DONE) implantation in a blind patient with retinitis pigmentosa

  • Hirokazu Sakaguchi
  • Motohiro Kamei
  • Takashi Fujikado
  • Eiji Yonezawa
  • Motoki Ozawa
  • Carmen Cecilia-Gonzalez
  • Orlando Ustariz-Gonzalez
  • Hugo Quiroz-Mercado
  • Yasuo Tano
Original Article

Abstract

The purpose of this study was to evaluate the efficacy and safety of artificial vision by using a direct optic nerve electrode (AV-DONE) in a blind patient with retinitis pigmentosa (RP). This device, comprising three wire electrodes (0.05 mm in diameter), was implanted into the optic disc of a patient with RP with no light perception vision and the device was left implanted. Six months later, visual sensations were elicited by electrical stimulation through each electrode and the thresholds for the phosphene perception elicited by pulses of 0.25-ms duration/phase and a pulse frequency of 320 Hz were 30, 5, and 70 µA for each electrode. The phosphenes, which ranged in size from that of a match head to an apple, were round, oval, or linear, primarily yellow, and focally distributed. The area of the phosphenes changed when the electrical stimulation was supplied from different electrodes. No complications arose during the follow-up period. Localized visual sensations were produced in a blind patient with advanced RP, suggesting that our system could lead to the development of a useful visual prosthesis system.

Key words

Human Optic nerve Retinitis pigmentosa Visual sensation Visual prosthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol 1968;196:479–493PubMedGoogle Scholar
  2. 2.
    Dobelle WH, Mladejovsky MG, Girvin JP. Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 1974;183:440–444PubMedCrossRefGoogle Scholar
  3. 3.
    Humayun MS, de Juan E Jr, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S. Pattern electrical stimulation of the human retina. Vision Res 1999;39:2569–2576PubMedCrossRefGoogle Scholar
  4. 4.
    Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B, Cimmarusti V, Van Boemel G, Dagnelie G, de Juan E. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 2003;43:2573–2581PubMedCrossRefGoogle Scholar
  5. 5.
    Chow AY, Chow VY. Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 1997;225:13–16PubMedCrossRefGoogle Scholar
  6. 6.
    Zrenner E, Miliczek KD, Gabel VP, Graf HG, Guenther E, Haemmerle H, Hoefflinger B, Kohler K, Nisch W, Schubert M, Stett A, Weiss S. The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 1997;29:269–280PubMedCrossRefGoogle Scholar
  7. 7.
    Zrenner E, Stett A, Weiss S, Aramant RB, Guenther E, Kohler K, Miliczek KD, Seiler MJ, Haemmerle H. Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 1999;39:2555–2567PubMedCrossRefGoogle Scholar
  8. 8.
    Zrenner E. Will retinal implants restore vision? Science 2002;295:1022–1025PubMedCrossRefGoogle Scholar
  9. 9.
    Rizzo JF III, Wyatt J, Humayun M, de Juan E, Liu W, Chow A, Eckmiller R, Zrenner E, Yagi T, Abrams G. Retinal prosthesis: an encouraging first decade with major challenges ahead. Ophthalmology 2001;26:13–14CrossRefGoogle Scholar
  10. 10.
    Rizzo JF III, Wyatt J, Loewenstein J, Kelly S, Shire D. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 2003;44:5355–5361PubMedCrossRefGoogle Scholar
  11. 11.
    Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 1998;813:181–186PubMedCrossRefGoogle Scholar
  12. 12.
    Veraart C, Wanet-Defalque MC, Gerard B, Valierde A, Delbeke J. Pattern recognition with the optic nerve visual prosthesis. Artif Organs 2003;27:996–1004PubMedCrossRefGoogle Scholar
  13. 13.
    Sakaguchi H, Fujikado T, Fang X, Kanda H, Osanai M, Nakauchi K, Ikuno Y, Kamei M, Yagi T, Nishimura S, Ohji M, Yagi T, Tano Y. Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes. Jpn J Ophthalmol 2004;48:256–261PubMedCrossRefGoogle Scholar
  14. 14.
    Nakauchi K, Fujikado T, Kanda H, Morimoto T, Choi JS, Ikuno Y, Sakaguchi H, Kamei M, Ohji M, Yagi T, Nishimura S, Sawai H, Fukuda Y, Tano Y. Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit eyes. Graefes Arch Clin Exp Ophthalmol 2005;243:169–174PubMedCrossRefGoogle Scholar
  15. 15.
    Fujikado T, Morimoto T, Kanda H, Kusaka S, Nakauchi K, Ozawa M, Matsushita K, Sakaguchi H, Ikuno Y, Kamei M, Tano Y. Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 2007;245:1411–1419PubMedCrossRefGoogle Scholar
  16. 16.
    Santos A, Humayun MS, de Juan E Jr, Greenburg RJ, Marsh MJ, Klock IB, Milam AH. Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 1997;115:511–515PubMedGoogle Scholar
  17. 17.
    Sakaguchi H, Fujikado T, Kanda H, Osanai M, Fang X, Nakauchi K, Ikuno Y, Kamei M, Ohji M, Yagi T, Tano Y. Electrical stimulation with a needle-type electrode inserted into the optic nerve in rabbit eyes. Jpn J Ophthalmol 2004;48:552–557PubMedCrossRefGoogle Scholar
  18. 18.
    Fang X, Sakaguchi H, Fujikado T, Osanai M, Kanda H, Ikuno Y, Kamei M, Ohji M, Gan D, Choi J, Yagi T, Tano Y. Direct stimulation of optic nerve by electrodes implanted in optic disc of rabbit eyes. Graefes Arch Clin Exp Ophthalmol 2005;243:49–56PubMedCrossRefGoogle Scholar
  19. 19.
    Fang X, Sakaguchi H, Fujikado T, Osanai M, Ikuno Y, Kamei M, Ohji M, Yagi T, Tano Y. Electrophysiological and histological studies of chronically implanted intrapapillary microelectrodes in rabbit eyes. Graefes Arch Clin Exp Ophthalmol 2006;244:364–375PubMedCrossRefGoogle Scholar
  20. 20.
    Bishop PO, Kozak W, Vakkur GJ. Some quantitative aspects of the cat’s eye: axis and plane of reference, visual field co-ordinates and optics. J Physiol 1962;163:466–502PubMedGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2009

Authors and Affiliations

  • Hirokazu Sakaguchi
    • 1
  • Motohiro Kamei
    • 1
  • Takashi Fujikado
    • 2
  • Eiji Yonezawa
    • 3
  • Motoki Ozawa
    • 3
  • Carmen Cecilia-Gonzalez
    • 4
  • Orlando Ustariz-Gonzalez
    • 4
  • Hugo Quiroz-Mercado
    • 4
  • Yasuo Tano
    • 1
  1. 1.Department of OphthalmologyOsaka University Medical SchoolSuita, OsakaJapan
  2. 2.Department of Applied Visual ScienceOsaka University Medical SchoolSuitaJapan
  3. 3.NIDEK Co., Ltd.GamagoriJapan
  4. 4.Vitreo and Retina ServiceAsociacion Para Evitar la CegueraMexico CityMexico

Personalised recommendations