Journal of Artificial Organs

, Volume 12, Issue 3, pp 166–171

Neurohumoral response and clinical effectiveness of continuous aortic flow augmentation in patients with decompensated heart failure

  • Till Neumann
  • Georg Aidonides
  • Thomas Konorza
  • Peter Krings
  • Raimund Erbel
Original Article


The increasing number of patients with progressive or exacerbated heart failure that is refractory to medical treatment necessitates the development of innovative cardiac assist devices. The aim of this study was to investigate whether a new percutaneously inserted system, which allows continuous aortic flow augmentation (CAFA), could be shown to be clinically effective with neurohormonal benefit in patients admitted with decompensated heart failure. Patients with exacerbations of chronic heart failure were recruited for the study. A percutaneous circulation assist device (Cancion system) promoting CAFA was implanted for up to 4 days in each patient. Clinical improvement was evaluated by measuring the clinical status according to the New York Heart Association (NYHA) classification and biochemical parameters including troponin and B-type natriuretic peptide (BNP) as markers of cardiac necrosis and cardiac overload; these parameters were measured before, during, and after CAFA treatment. The decrease in BNP was determined after implantation, reaching, on average, a maximum decrease of 57% at 72 h (P = 0.04). The neurohumoral response remained significant (P < 0.05) up to 120 h after implantation, with a decrease in BNP levels of 37%, on average, compared to baseline values. Troponin I did not show any significant change during mechanical assistance (P > 0.2). All patients had improved clinical status according to the NYHA classification, and the improvement lasted for more than 1 week. Percutaneous heart-assist devices promoting CAFA offer clinical improvement and a neurohumoral response, with a significant BNP reduction in severe exacerbation of chronic heart failure that is refractory to medical treatment.

Key words

Heart failure Continuous aortic flow augmentation B-type natriuretic peptide (BNP) Heart-assist device 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McKee PA, Castelli WP, McNamara PM, Kannel WB. The natural history of congestive heart failure: the Framingham study. N Engl J Med 1971;285:1441–1446PubMedGoogle Scholar
  2. 2.
    Dzau VJ. Autocrine and paracrine mechanisms in the pathophysiology of heart failure. Am J Cardiology 1992;70:4C–11CCrossRefGoogle Scholar
  3. 3.
    Leithe ME, Magorien RD, Hermiller JB, Unverferth DV, Leier CV. Relationship between central hemodynamics and regional blood flow in normal subjects and in patients with congestive heart failure. Circulation 1984;69:57–64PubMedGoogle Scholar
  4. 4.
    Konstam MA, Czerska B, Böhm M, Oren RM, Sadowski J, Khanal S, Abraham WT, Wasler A, Dahm JB, Gavazzi A, Gradinac S, Legrand V, Mohacsi P, Poelzl G, Radovancevic B, Van Bakel AB, Zile MR, Cabuay B, Bartus K, Jansen P. Continuous aortic flow augmentation: a pilot study of hemodynamic and renal responses to a novel percutaneous intervention in decompensated heart failure. Circulation 2005;112:3107–3114PubMedCrossRefGoogle Scholar
  5. 5.
    Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, Van Lente F; Chronic Kidney Disease Epidemiology Collaboration. Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem 2007;53:766–772PubMedCrossRefGoogle Scholar
  6. 6.
    Saberin A, Mueller B, Konstam MA, Wagner DR. Percutaneous continuous aortic flow augmentation for cardiac recovery in chronic heart failure patient with peripheral vascular disease. Congest Heart Fail 2006;12:343–346PubMedCrossRefGoogle Scholar
  7. 7.
    Jain P, Massie BM, Gattis WA, Lein L, Gheorghiade M. Current medical treatment for the exacerbation of chronic heart failure resulting in hospitalization. Am Heart J 2003;145:3–17CrossRefGoogle Scholar
  8. 8.
    Miller LW, Pagani FP, Russell SD, John R, Boyle AJ, Aaronson KD, Conte JV, Naka Y, Mancini D, Delgado RM, MacGillivray TE, Farrar DJ, Frazier OH; HeartMate II Clinical Investigators. Use of continuous flow device in patients awaiting heart transplantation. N Engl J Med 2007;357:885–896PubMedCrossRefGoogle Scholar
  9. 9.
    Haithcock BE, Morita H, Fanous NH, Suzuki G, Sabbah HN. Hemodynamic unloading of the failing left ventricle using an arterial-to-arterial extracorporeal flow circuit. Ann Thorac Surg 2004;77:158–163PubMedCrossRefGoogle Scholar
  10. 10.
    Schirger JA, Boerrigter G, Chen HH, Costello-Boerrigter LC, Viole T, Konstam MA, Burnett JC. Renal protection with the Cancion system in severe experimental CHF. J Cardiac Fail 2005;11:139Google Scholar
  11. 11.
    Lu X, Kassab GS. Nitric oxide is significantly reduced in ex-vivo porcine arteries during reverse flow because of increased superoxide production. J Physiol 2004;561:575–582PubMedCrossRefGoogle Scholar
  12. 12.
    Gegenhuber A, Mueller T, Firlinger F, Lenz K, Poelz W, Haltmayer M. Time course of B-type natriuretic peptide (BNP) and N-terminal ProBNP changes in patients with decompensated heart failure. Clin Chem 2004;50:454–456PubMedCrossRefGoogle Scholar
  13. 13.
    Giannakoulas G, Giannoglou G, Vassilikos V, Martiadou K, Kalpidis P, Parharidis G, Louridas G. Clinical significance of acute neurohormonal response after levosimendan treatment. Am J Cardiol 2006;98:1123–1124PubMedCrossRefGoogle Scholar
  14. 14.
    Nohria A, Tsang SW, Fang JC, Lewis EF, Jarcho JA, Mudge GH, Stevenson LW. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol 2003;41:1797–1804PubMedCrossRefGoogle Scholar
  15. 15.
    Wagner FD, Buz S, Zais H, Stasch JP, Hetzer R, Hocher B. Humoral and hemodynamic responses after left ventricular assist device implantation and heart transplantation. Exp Biol Med (Maywood) 2006;231:861–864Google Scholar
  16. 16.
    Bruggink AH, de Jonge N, van Oosterhout MF, Van Wichen DF, de Koning E, Lahpor JR, Kemperman H, Gmelig-Meyling FH, de Weger RA. Brain natriuretic peptide is produced both by cardiomyocytes and cells infiltrating the heart in patients with severe heart failure supported by a left ventricular assist device. J Heart Lung Transplant 2006;25:174–180PubMedCrossRefGoogle Scholar
  17. 17.
    Xydas S, Rosen RS, Ng C, Mercando M, Cohen J, DiTullio M, Magnano A, Marboe CC, Mancini DM, Naka Y, Oz MC, Maybaum S. Mechanical unloading leads to echocardiographic, electrocardiographic, neurohormonal, and histologic recovery. J Heart Lung Transplant 2006;25:7–15PubMedCrossRefGoogle Scholar
  18. 18.
    Kuhn M, Voss M, Mitko D, Stypmann J, Schmid C, Kawaguchi N, Grabellus F, Baba HA. Left ventricular assist device support reverses altered cardiac expression and function of natriuretic peptides and receptors in end-stage heart failure. Cardiovasc Res 2004;64:308–314PubMedCrossRefGoogle Scholar
  19. 19.
    Ohata T, Sakakibara T, Takano H, Izutani H. Plasma brain natriuretic peptide reflects left ventricular function during percutaneous cardiopulmonary support. Ann Thorac Surg 2004;77:164–167PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2009

Authors and Affiliations

  • Till Neumann
    • 1
  • Georg Aidonides
    • 1
  • Thomas Konorza
    • 1
  • Peter Krings
    • 1
  • Raimund Erbel
    • 1
  1. 1.Clinic of Cardiology, Department of Internal MedicineUniversity of EssenEssenGermany

Personalised recommendations