Journal of Artificial Organs

, Volume 12, Issue 2, pp 73–79 | Cite as

Materials for metallic stents

  • Takao HanawaEmail author


Stents are expandable tubes of metallic mesh that were developed to address the negative sequelae of balloon angioplasty and are currently used in cardiovascular medicine. In this review, the use of particular metals to make stents is discussed from the viewpoint of materials engineering. The properties and characteristics of metals used for stents, such as stainless steels, nickel-titanium alloys, tantalum, cobalt-chromium alloys, and magnesium alloys, are explained. In addition, problems and disadvantages related to metallic stents and their possible solutions are given.

Key words

Metallic stent Mechanical property Fatigue Corrosion Surface treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dotter CT, Judkins MP. Transluminal treatment of arteriosclerotic obstruction: description of a new technique and preliminary report of its application. Circulation 1964;30:654–670PubMedGoogle Scholar
  2. 2.
    Palmaz JC, Sibbitt RR, Tio FO, Reuter SR, Peters JE, Garcia F. Expandable intraluminal vascular graft. A feasibility study. Surgery 1986;99:199–205PubMedGoogle Scholar
  3. 3.
    Roubin GS, Robinson KA, King SB, Gianturco C, Black AJ, Brown JE, Siegel RJ, Douglas JS. Early and late results of intra-coronary arterial stenting after coronary angioplasty in dogs. Circulation 1987;76:891–897PubMedGoogle Scholar
  4. 4.
    Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L. Intravascular stents to prevent occlusion and restenosis after trans-luminal angioplasty. N Eng J Med 1987;316:701–706CrossRefGoogle Scholar
  5. 5.
    Phatouros CC, Higashida RT, Malek AM. Endovascular stenting for carotid artery stenosis: preliminary experience using the shape-memory-alloy recoverable technology (SMART) stent. AJNR 2000;21:732–738PubMedGoogle Scholar
  6. 6.
    Roubin GS, Yadav S, Iyer SS, Vitek J. Carotid stent-supported angioplasty: a neurovascular intervention to prevent stroke. Am J Cardiol 1996;78:8–12PubMedCrossRefGoogle Scholar
  7. 7.
    Dietrich EB. Aortic endografting: visions of things to come. J Endovasc Surg 1996;3:R21–R23CrossRefGoogle Scholar
  8. 8.
    Wholey MH, Wholey M, Bergeron P, Diethrich EB, Henry M, Laborde JC, Mathias K, Myla S, Roubin GS, Shawl F, Theron JG, Yadav JS, Dorros G, Guimaraens J, Higashida R, Kumar V, Leon M, Lim M, Londero H, Mesa J, Ramee S, Rodriguez A, Rosenfield K, Teitelbaum G, Vozzi C. Current global status of carotid artery stent placement. Cathet Cardiovasc Diagn 1998;44:1–6PubMedCrossRefGoogle Scholar
  9. 9.
    Richter GM, Palmaz JC, Allenberg JR, Kauffmann GW. Percutaneous stent grafts for aortic aneurysms — preliminary experience with a new procedure. Radiology 1994;34:511–518Google Scholar
  10. 10.
    Akazawa T, Minami S, Takahashi K, Kotani T, Hanawa T. Corrosion of spinal implants retrieved from patients with scoliosis. J Orthop Res 2005;10:200–205Google Scholar
  11. 11.
    Tomizawa Y, Hanawa T, Kuroda D, Nishida H, Endo M. Corrosion of stainless sternal wire after long-term implantation. J Artif Organs 2006;9:61–66PubMedCrossRefGoogle Scholar
  12. 12.
    Hanawa T, Hiromoto S, Yamamoto A, Kuroda D, Asami K. XPS characterization of the surface oxide film of 316L stainless samples that were located in quasi-biological environments. Mater Trans 2002;43:3088–3092CrossRefGoogle Scholar
  13. 13.
    Sundgren JE, Bodo P, Lundstrom I, Berggren A, Hellem S. Auger electron spectroscopic studies of stainless steel implants. J Biomed Mater Res 1985;19:663–671PubMedCrossRefGoogle Scholar
  14. 14.
    Heintz C, Riepe G, Birken L, Kaiser E, Chakfe N, Morlock M, Delling G, Imig H. Corroded Nitinol wires in explanted aortic endografts. J Endovasc Ther 2001;8:248–253PubMedCrossRefGoogle Scholar
  15. 15.
    Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L. Intravascular stents to prevent occlusion and restenosis after trans-luminal angioplasty. N Eng J Med 1987;316:701–706Google Scholar
  16. 16.
    Hanawa T, Hiromoto S, Asami K. Characterization of the surface oxide film of a Co-Cr-Mo alloy after being located in quasi-biological environments using XPS. Appl Surf Sci 2001;183:68–75CrossRefGoogle Scholar
  17. 17.
    Peeters P, Bosiers M, Verbist J, Deloose K, Heublein B. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. J Endovasc Ther 2005;12:1–5PubMedCrossRefGoogle Scholar
  18. 18.
    Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Bose D, Koolen J, Luscher TF, Weissman N, Waksman R. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 2007;369:1869–1875PubMedCrossRefGoogle Scholar
  19. 19.
    Fattori R, Piva T. Drug-eluting stents in vascular intervention. Lancet 2003;362:247–249CrossRefGoogle Scholar
  20. 20.
    Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology: drug-eluting stents — Pt. I. Circulation 2003;107:2274–2279PubMedCrossRefGoogle Scholar
  21. 21.
    Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology: drug-eluting stents — Pt. II. Circulation 2003;107:2283–2289Google Scholar
  22. 22.
    Nakayama Y, Kim JY, Nishi S, Ueno H, Matsuda T. Development of high-performance stent: gelatinous photogel-coated stent that permits drug delivery and gene transfer. J Biomed Mater Res 2001;57:559–566PubMedCrossRefGoogle Scholar
  23. 23.
    Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and their properties as hydrogel membrane. Polym J 1990;30:355–360CrossRefGoogle Scholar
  24. 24.
    Huang NP, Michel R, Voros J, Textor M, Hofer R, Rossi A, Elbert DL, Hubbell JA, Spencer ND. Poly(l-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir 2001;17:489–498CrossRefGoogle Scholar
  25. 25.
    Scheinert D, Scheinert S, Sax J, Piorkowski C, Braunlich S, Ulrich M, Biamino G, Schmidt A. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J Am Coll Cardiol 2005;45:312–315PubMedCrossRefGoogle Scholar
  26. 26.
    Sianos G, Hofma S, Lighthart JMR, Saia F, Hoye A, Lemos PA, Serruys PW. Stent fracture and restenosis in the drug-eluting stent era. Catheter Cardiovasc Interv 2004;61:111–116PubMedCrossRefGoogle Scholar
  27. 27.
    Schlager O, Dick P, Sabeti S, Amighi J, Mlekusch W, Minar E, Schillinger M. Long-segment SFA stenting — the dark sides. J Endovasc Ther 2005;12:676–684PubMedCrossRefGoogle Scholar
  28. 28.
    Chowdhury P, Ramos RG. Coronary stent fracture. N Engl J Med 2002;347:581PubMedCrossRefGoogle Scholar
  29. 29.
    Kang WY, Kim W, Kim HG, Kim W. Drug-eluting stent fracture occurred within 2 days after stent implantation. Int J Cardiol 2007;120:273–275PubMedCrossRefGoogle Scholar
  30. 30.
    Robertson SW, Ritchie RO. A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube. J Biomed Mater Res Part B Appl Biomater 2008;84B:26–33CrossRefGoogle Scholar
  31. 31.
    Gall K, Tyber J, Wilkesanders G, Robertson SW, Ritchie RO, Maier HJ. Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys. Mater Sci Eng 2008;486A:389–403Google Scholar
  32. 32.
    Robertson SW, Ritchie RO. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects. Biomaterials 2007;28:700–709PubMedCrossRefGoogle Scholar
  33. 33.
    Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005;26:3557–3563PubMedCrossRefGoogle Scholar
  34. 34.
    Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 2003;89:651–656PubMedCrossRefGoogle Scholar
  35. 35.
    Sumita M, Hanawa T, Teoh SH. Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials — review. Mater Sci Eng 2004;C24:753–760Google Scholar
  36. 36.
    Gebau RC, Brown RS. Biomedical implant alloy. Adv Mater Process 2001;159:46–48Google Scholar
  37. 37.
    Menzel J, Kirschner W, Stein G. High-nitrogen-containing Ni-free austenitic steels for medical applications. ISIJ Int 1996;36:893–900CrossRefGoogle Scholar
  38. 38.
    Uggowitzer PJ, Magdowski R, Speidel MO. Nickel-free high-nitrogen austenitic steels. ISIJ Int 1996;36:893–900CrossRefGoogle Scholar
  39. 39.
    Kuroda D, Hanawa T, Hibaru T, Kuroda S, Kobayashi M, Kobayashi T. New manufacturing process of nickel-free stainless steel with nitrogen absorption treatment. Mater Trans 2003;44:414–420CrossRefGoogle Scholar
  40. 40.
    Nitta K, Watanabe S, Masahashi N, Hosoda H, Hanada S. Ni-free Ti-Nb-Sn shape memory alloys. In: Niinomi M, Okabe T, Taleff EM, Lesure DR, Lippard HE (eds) Structural biomaterials for the 21st century. Warrendale, Pennsylvania: TMS, 2001;25–34Google Scholar
  41. 41.
    Kurosu S, Nomura N, Chiba A. Microstructure and mechanical properties of Co-29Cr-Wo alloy aged at 1023 K. Mater Trans 2007;48:1517–1522CrossRefGoogle Scholar
  42. 42.
    Fukushima O, Yoneyama T, Doi H, Hanawa T. Corrosion resistance and surface characterization of electrolyzed Ti-Ni alloy. Dent Mater J 2006;25:151–160PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2009

Authors and Affiliations

  1. 1.Institute of Biomaterials and BioengineeringTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations