Journal of Artificial Organs

, Volume 10, Issue 2, pp 109–114 | Cite as

Development of a novel pulsatile bioreactor for tissue culture

  • Yos S. Morsi
  • William W. Yang
  • Amal Owida
  • Cynthia S. Wong


The construction of tissue-engineered parts such as heart valves and arteries requires more than just the seeding of cells onto a biocompatible/biodegradable polymeric scaffold. It is essential that the functionality and mechanical integrity of the cell-seeded scaffold be investigated in vitro prior to in vivo implantation. The correct hemodynamic conditioning would lead to the development of tissues with enhanced mechanical strength and cell viability. Therefore, a bioreactor that can simulate physiological conditions would play an important role in the preparation of tissue-engineered constructs. In this article, we present and discuss the design concepts and criteria, as well as the development, of a multifunctional bioreactor for tissue culture in vitro. The system developed is compact and easily housed in an incubator to maintain sterility of the construct. Moreover, the proposed bioreactor, in addition to mimicking in vivo conditions, is highly flexible, allowing different types of constructs to be exposed to various physiological flow conditions. Initial verification of the hemodynamic parameters using Laser doppler anemometry indicated that the bioreactor performed well and produced the correct physiological conditions.

Key words

Tissue engineering Multifunctional bioreactor Heart valves Arteries Pulsatile flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morsi, YS, Birchall, IE 2005Tissue engineering a functional aortic heart valve: an appraisalFuture Cardiol1405411CrossRefGoogle Scholar
  2. 2.
    Dumont, K, Yperman, J, Verbeken, E, Segers, P, Meuris, B, Vandenberghe, S, Flameng, W, Verdonck, PR 2002Design of a new pulsatile bioreactor for tissue engineered aortic heart valve formationArtif Organs26710714PubMedCrossRefGoogle Scholar
  3. 3.
    Mol, A, Driessen, NJ, Rutten, MC, Hoerstrup, SP, Bouten, CV, Baaijens, FP 2005Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approachAnn Biomed Eng3317781788PubMedCrossRefGoogle Scholar
  4. 4.
    Nasseri, BA, Pomerantseva, I, Kaazempur-Mofrad, MR, Sutherland, FW, Perry, T, Ochoa, E, Thompson, CA, Mayer, JE,Jr, Oesterle, SN, Vacanti, JP 2003Dynamic rotational seeding and cell culture system for vascular tube formationTissue Eng9291299PubMedCrossRefGoogle Scholar
  5. 5.
    Niklason, LE, Gao, J, Abbott, WM, Hirschi, KK, Houser, S, Marini, R, Langer, R 1999Functional arteries grown in vitroScience284489493PubMedCrossRefGoogle Scholar
  6. 6.
    Zeltinger, J, Landeen, LK, Alexander, HG, Kidd, ID, Sibanda, B 2001Development and characterization of tissue-engineered aortic valvesTissue Eng7922PubMedCrossRefGoogle Scholar
  7. 7.
    Lichtenberg, A, Tudorache, I, Cebotari, S, Ringes-Lichtenberg, S, Sturz, G, Hoeffler, K, Hurscheler, C, Brandes, G, Hilfiker, A, Haverich, A 2006In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditionsBiomaterials2742214229PubMedCrossRefGoogle Scholar
  8. 8.
    Sodian, R, Sperling, JS, Martin, DP, Egozy, A, Stock, U, Mayer, JE,Jr, Vacanti, JP 2000Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineeringTissue Eng6183188PubMedCrossRefGoogle Scholar
  9. 9.
    Hoerstrup, SP, Sodian, R, Daebritz, S, Wang, J, Bacha, EA, Martin, DP, Moran, AM, Guleserian, KJ, Sperling, JS, Kaushal, S, Vacanti, JP, Schoen, FJ, Mayer, JE,Jr 2000Functional living trileaflet heart valves grown in vitroCirculation102III4449PubMedGoogle Scholar
  10. 10.
    Hoerstrup, SP, Zund, G, Sodian, R, Schnell, AM, Grunenfelder, J, Turina, MI 2001Tissue engineering of small-caliber vascular graftsEur J Cardiothorac Surg20164169PubMedCrossRefGoogle Scholar
  11. 11.
    Williams, C, Wick, TM 2004Perfusion bioreactor for small-diameter tissue-engineered arteriesTissue Eng10930941PubMedCrossRefGoogle Scholar
  12. 12.
    Hoerstrup, SP, Sodian, R, Sperling, JS, Vacanti, JP, Mayer, JE,Jr 2000New pulsatile bioreactor for in vitro formation of tissue-engineered heart valvesTissue Eng67579PubMedCrossRefGoogle Scholar
  13. 13.
    Sodian, R, Lemke, T, Fritsche, C, Hoerstrup, SP, Fu, P, Potapov, EV, Hausmann, H, Hetzer, R 2002Tissue-engineering bioreactors: a new combined cell-seeding and perfusion system for vascular tissue engineeringTissue Eng8863870PubMedCrossRefGoogle Scholar
  14. 14.
    Sodian, R, Lemke, T, Loebe, M, Hoerstrup, SP, Potapov, EV, Hausmann, H, Meyer, R, Hetzer, R 2001New pulsatile bioreactor for fabrication of tissue-engineered patchesJ Biomed Mater Res58401405PubMedCrossRefGoogle Scholar
  15. 15.
    Hildebrand, DK, Wu, ZJ, Mayer, JE,Jr, Sacks, MS 2004Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valvesAnn Biomed Eng3210391049PubMedCrossRefGoogle Scholar
  16. 16.
    Narita, Y, Hata, K, Kagami, H, Usui, A, Ueda, M, Ueda, Y 2004Novel pulse-duplicating bioreactor system for tissue-engineered vascular constructsTissue Eng1012241233PubMedGoogle Scholar
  17. 17.
    Martin, Y, Vermette, P 2005Bioreactors for tissue mass culture: design, characterization, and recent advancesBiomaterials2674817503PubMedCrossRefGoogle Scholar
  18. 18.
    Morsi Y. On the uncertainty of laser and thermal anemometry measurement techniques used in prosthetic heart valve research. In: Proceedings of the Waseda International Congress of Modelling and Simulation Technology for Artificial Organs. Tokyo: NK international, 1996Google Scholar
  19. 19.
    Morsi, YS, Sakhaeimanesh, A, Clayton, BR 2000Hydrodynamic evaluation of three artificial aortic valve chambersArtif Organs245763PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2007

Authors and Affiliations

  • Yos S. Morsi
    • 1
  • William W. Yang
    • 2
  • Amal Owida
    • 1
  • Cynthia S. Wong
    • 1
  1. 1.Biomechanics and Tissue Engineering GroupIRIS, Faculty of Engineering and Industrial SciencesHawthornAustralia
  2. 2.Division of MineralsCSIROClaytonAustralia

Personalised recommendations