Journal of Artificial Organs

, Volume 10, Issue 2, pp 96–103 | Cite as

Transient fluid–structure coupling for simulation of a trileaflet heart valve using weak coupling

  • Yos S. Morsi
  • William W. Yang
  • Cynthia S. Wong
  • Subrat Das
ORIGINAL ARTICLE

Abstract

In this article, a three-dimensional transient numerical approach coupled with fluid–structure interaction for the modeling of an aortic trileaflet heart valve at the initial opening stage is presented. An arbitrary Lagrangian–Eulerian kinematical description together with an appropriate fluid grid was used for the coupling strategy with the structural domain. The fluid dynamics and the structure aspects of the problem were analyzed for various Reynolds numbers and times. The fluid flow predictions indicated that at the initial leaflet opening stage a circulation zone was formed immediately downstream of the leaflet tip and propagated outward as time increased. Moreover, the maximum wall shear stress in the vertical direction of the leaflet was found to be located near the bottom of the leaflet, and its value decreased sharply toward the tip. In the horizontal cross section of the leaflet, the maximum wall shear stresses were found to be located near the sides of the leaflet.

Key words

Trileaflet heart valve Computational fluid dynamics Fluid–structure interaction Arbitrary Lagrangian–Eulerian method Wall shear stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldwin, JT, Tarbell, JM 1991Mean velocities and Reynolds stresses within regurgitant jets produced by tilting disc valvesASAIO Trans37348349Google Scholar
  2. 2.
    Sakhaeimanesh, AA, Morsi, YS 1999Analysis of regurgitation, mean systolic pressure drop and energy losses for two artificial aortic valvesJ Med Eng Tech226368CrossRefGoogle Scholar
  3. 3.
    Reul, H, Potthast, K 1998Durability/wear testing of heart valve substitutesJ Heart Valve Dis7151157PubMedGoogle Scholar
  4. 4.
    Lin, Q, Morsi, YS, Smith, B, Yang, W 2004Numerical simulation and structure verification of jellyfish heart valveInt J Comput Appl Tech2127CrossRefGoogle Scholar
  5. 5.
    Morsi, YS, Birchall, IE, Rosenfeldt, FL 2004Artificial aortic valves: an overviewInt J Artif Organs27445451PubMedGoogle Scholar
  6. 6.
    Morsi, YS, Birchall, IE 2005Tissue engineering a functional aortic heart valve: an appraisalFuture Cardiol1405411CrossRefPubMedGoogle Scholar
  7. 7.
    Yoganathan, AP, He, Z, Jones, SC 2004Fluid mechanics of heart valvesAnnu Rev Biomed Eng6331362PubMedCrossRefGoogle Scholar
  8. 8.
    Peskin, CS, McQueen, DM 1980Modelling prosthetic heart valves for numerical analysis of blood flow in the heartJ Comput Phys37113132CrossRefGoogle Scholar
  9. 9.
    Peskin, CS, McQueen, DM 1996Fluid dynamics of the heart and its valvesOthmer, HGAdler, FRLewis, MADallon, JC eds. Case studies in mathematical modeling – ecology, physiology, and cell biologyPrentice-HallEnglewood Cliffs309337Google Scholar
  10. 10.
    Peskin, CS 2002The immersed boundary methodsActa Numer11479517CrossRefGoogle Scholar
  11. 11.
    Makhijani, VB, Yang, HQ, Dionne, PJ, Thubrikar, MJ 1997Three-dimensional coupled fluid–structure simulation of pericardial bioprosthetic aortic valve functionASAIO J43387392CrossRefGoogle Scholar
  12. 12.
    Bathe, M, Kamm, RD 1999A fluid–structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic arteryJ Biomech Eng121361369PubMedGoogle Scholar
  13. 13.
    De Hart, J, Peters, GWM, Schreurs, PJG, Baaijens, FPT 2003A three-dimensional analysis of fluid–structure interaction in the aortic valveJ Biomech36103112PubMedCrossRefGoogle Scholar
  14. 14.
    Baaijens, FPT 2001A fictitious domain/mortar element method for fluid–structure interactionInt J Numer Method Fluids35743761CrossRefGoogle Scholar
  15. 15.
    Glowinski, R, Pan, TW, Periaux, JA 1997Largrange multiplier/fictitious domain method for the numerical simulation of incompressible flow around moving rigid bodies: (I) case where the rigid body motions are known a prioriComptes Rendus de I'Academie des Sciences Series I Mathematics325783791CrossRefGoogle Scholar
  16. 16.
    Glowinski, R 2003Finite element for incompressible viscous flowCiarlet, PGLion, JL eds. Handbook of numerical analysis, vol IXNorth-HollandAmsterdamGoogle Scholar
  17. 17.
    De Hart, J, Baaijens, FPT, Peters, GWM, Schreurs, PJG 2003A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valveJ Biomech63699712CrossRefGoogle Scholar
  18. 18.
    Donea, J 1981An arbitrary Lagrangian–Eulerian finite element method for transient fluid–structure interactionsComput Methods Appl Mech Eng33689723CrossRefGoogle Scholar
  19. 19.
    Bertrand, F, Tanguy, PA, Thibault, F 1997A three-dimensional fictitious domain method for incompressible fluid flow problemsInt J Numer Methods Fluids25719736CrossRefGoogle Scholar
  20. 20.
    Morsi, YS, Sakhaeimanesh, AA 2000Flow characteristics past jellyfish and St. Vincent valves in the aortic position under physiological pulsatile flow conditionsArtif Organs24564574PubMedCrossRefGoogle Scholar
  21. 21.
    Huerta, A, Liu, WK 1988Viscous flow with large free surface motionComput Methods Appl Mech Eng69277324CrossRefGoogle Scholar
  22. 22.
    Jiang, H, Campbell, G, Boughner, D, Wan, WK, Quantz, M 2004Design and manufacture of polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesisMed Eng Phys26269277PubMedCrossRefGoogle Scholar
  23. 23.
    Penrose, JMT, Staples, CJ 2002Implicit fluid–structure coupling for simulation of cardiovascular problemsInt J Numer Methods Fluids40467478CrossRefGoogle Scholar
  24. 24.
    Woo, YR, Williams, FP, Yoganathan, AP 1983Steady and pulsatile flow studies on a trileaflet heart valve prosthesisScand J Thorac Cardiovasc Surg17227236PubMedGoogle Scholar
  25. 25.
    Stevenson, DM, Yoganathan, AP 1985Numerical simulation of steady turbulent flow through trileaflet aortic heart valves-I. Computational scheme and methodologyJ Biomech18899907PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2007

Authors and Affiliations

  • Yos S. Morsi
    • 1
  • William W. Yang
    • 2
  • Cynthia S. Wong
    • 1
  • Subrat Das
    • 1
  1. 1.Biomechanics and Tissue Engineering Group, Industrial Research Institute IRISSwinburne University of TechnologyHawthornAustralia
  2. 2.Division of MineralsCommonwealth Scientific and Industrial Research OrganisationClaytonAustralia

Personalised recommendations