Journal of Artificial Organs

, Volume 9, Issue 4, pp 263–266 | Cite as

The development of a multichannel electrode array for retinal prostheses

  • Yasuo TerasawaEmail author
  • Hiroyuki Tashiro
  • Akihiro Uehara
  • Tohru Saitoh
  • Motoki Ozawa
  • Takashi Tokuda
  • Jun Ohta


The development of a multielectrode array is the key issue for retinal prostheses. We developed a 10 × 10 platinum electrode array that consists of an 8-µm polyimide layer sandwiched between 5-µm polymonochloro-para-xylylene (parylene-C) layers. Each electrode was formed as a 30-µm-high bump by Pt/Au double-layer electroplating. We estimated the charge delivery capability (CDC) of the electrode by measuring the CDCs of two-channel electrode arrays. The dimensions of each electrode of the two-channel array were the same as those of each electrode formed on the 10 × 10 array. The results suggest that for cathodic-first (CF) pulses, 80% of electrodes surpassed our development target of 318 µC/cm2, which corresponds to the charge density of pulses of 500 µs duration and 200 µA amplitude for a 200-µm-diameter planar electrode.

Key words

Visual prosthesis Electrode Charge delivery capability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Santos, A, Humayun, MS, de Juan, E,Jr, Greenberg, R, Marsh, MJ, Klock, IB, Milam, AH 1997Preservation of the inner retina in retinits pigmentosa. A morphometric analysisArch Ophthalmol115511515PubMedGoogle Scholar
  2. 2.
    Kim, SY, Sadda, S, Pearlman, J, Humayun, MS, de Juan, E,Jr, Melia, BM, Green, WR 2002Morphometric analysis of the macula in eyes with disciform age-related macular degenerationRetina22471477PubMedCrossRefGoogle Scholar
  3. 3.
    Chow, AY, Chow, VY 1997Subretinal electrical stimulation of the rabbit retinaNeurosci Lett2251316PubMedCrossRefGoogle Scholar
  4. 4.
    Chow, AY, Pardue, MT, Chow, VY, Peyman, GA, Liang, C, Perlman, JI, Peachey, NS 2001Implantation of silicon chip microphotodiode arrays into the cat subretinal spaceIEEE Tran Neural Sys Rehab Eng98695CrossRefGoogle Scholar
  5. 5.
    Zrenner, E, Stett, A, Weiss, S, Aramant, RB, Guenther, E, Kohler, K, Miliczek, KD, Seiler, MJ, Haemmerle, H 1999Can subretinal microphotodiodes successfully replace degenerated photoreceptors?Vision Res3925552567PubMedCrossRefGoogle Scholar
  6. 6.
    Stett, A, Barth, W, Weiss, S, Haemmerle, H, Zrenner, E 2000Electrical multisite stimulation of the isolated chicken retinaVision Res4017851795PubMedCrossRefGoogle Scholar
  7. 7.
    Humayun, MS, de Juan, E,Jr, Weiland, JD, Dagnelie, G, Katona, S, Greenberg, R, Suzuki, S 1999Pattern electrical stimulation of the human retinaVision Res3925692576PubMedCrossRefGoogle Scholar
  8. 8.
    Humayun, MS, Weiland, JD, Fujii, GY, Greenberg, R, Williamson, R, Little, J, Mech, B, Cimmarusti, V, Boemel, G, Dagnelie, G, de Juan, E,Jr 2003Visual perception in a blind subject with a chronic microelectronic retinal prosthesisVision Res4325732581PubMedCrossRefGoogle Scholar
  9. 9.
    Laube, T, Schanze, T, Brockmann, C, Bolle, I, Stieglitz, T, Bornfeld, N 2003Chronically implanted epidural electrodes in Göttinger minipigs allow functional tests of epiretinal implantsGrafe's Arch Clin Exp Ophthalmol24110131019CrossRefGoogle Scholar
  10. 10.
    Walter, P, Heimann, K 2000Evoked cortical potentials after electrical stimulation of the inner retina in rabbitsGrafe's Arch Clin Exp Ophthalmol238315318CrossRefGoogle Scholar
  11. 11.
    Kanda, H, Morimoto, T, Fujikado, T, Tano, Y, Fukuda, Y, Sawai, H 2004Electrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS ratsInvest Ophthalmol Vis Sci45560566PubMedCrossRefGoogle Scholar
  12. 12.
    Nakauchi, K, Fujikado, T, Kanda, H, Morimoto, T, Choi, JS, Ikuno, Y, Sakaguchi, S, Kamei, M, Ohji, M, Yagi, T, Nishimura, S, Sawai, H, Fukuda, Y, Tano, Y 2005Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit eyesGrafe's Arch Clin Exp Ophthalmol243169174CrossRefGoogle Scholar
  13. 13.
    Sieglitz, T, Beutel, H, Meyer, JU 1997A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nervesSensors Actuators A60240243CrossRefGoogle Scholar
  14. 14.
    Rizzo, JF,III, Wyatt, J, Lowenstein, J, Kelly, S, Shire, D 2003Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arraysInvest Ophthalmol Vis Sci4453555361PubMedCrossRefGoogle Scholar
  15. 15.
    Brummer, SB, Turner, MJ 1977Electrical stimulation with Pt electrodes: II Estimation of maximum surface redox (theoretical non-gassing) limitsIEEE Trans Biomed Eng24440443PubMedGoogle Scholar
  16. 16.
    Tokuda, T, Pan, YL, Uehara, A, Kagawa, K, Nunoshita, M, Ohta, J 2005Flexible and extendible neural interface device based on cooperative multi-chip CMOS LSI architectureSensors Actuators A1228898CrossRefGoogle Scholar
  17. 17.
    Licari, JJ 2003Coating materials for electronic applicationsNoyesNew YorkGoogle Scholar
  18. 18.
    Wolgemuth L. The surface modification properties of parylene for medical applications. Business Brief Med Device Manuf Technol 2002;1–4Google Scholar
  19. 19.
    Noh, HS, Huang, Y, Hesketh, PJ 2004Parylene micromolding, a rapid and low-cost fabrication method for parylene microchannelsSensors Actuators B1027885CrossRefGoogle Scholar
  20. 20.
    Brummer, SB, Turner, MJ 1977Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodesIEEE Trans Biomed Eng245963PubMedGoogle Scholar
  21. 21.
    Rose, TL, Robblee, LS 1990Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2-ms pulsesIEEE Trans Biomed Eng3711181120PubMedCrossRefGoogle Scholar
  22. 22.
    Brummer, SB, Turner, MJ 1977Electrical stimulation with Pt electrodes: I A method for determination of “real” electrode areasIEEE Trans Biomed Eng24436439PubMedGoogle Scholar
  23. 23.
    Kelliher, EM, Rose, TL 1989Evaluation of charge injection properties of thin film redox materials for use as neural stimulationMat Res Soc Symp Proc1102327Google Scholar
  24. 24.
    Cogan, SF, Troyk, PR, Ehrlich, J, Plante, TD 2005In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodesIEEE Trans Biomed Eng5216121614PubMedCrossRefGoogle Scholar
  25. 25.
    Weiland, JD, Anderson, DJ, Humayun, MS 2002In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodesIEEE Trans Biomed Eng4915741579PubMedCrossRefGoogle Scholar
  26. 26.
    Beebe, X, Rose, TL 1988Charge injection limits of activated iridium oxide electrodes with 0.2-ms pulses in bicarbonate buffered salineIEEE Trans Biomed Eng35494495PubMedCrossRefGoogle Scholar
  27. 27.
    Janders, M, Egert, U, Stelze, M, Nisch, W 1996Novel thin-film titanium nitride microelectrodes with excellent charge transfer capability for cell stimulation and sensing applicationsProceedings of the 19th International Conference IEEE/EMBSIEEEPiscataway11911193Google Scholar

Copyright information

© The Japanese Society for Artificial Organs 2006

Authors and Affiliations

  • Yasuo Terasawa
    • 1
    Email author
  • Hiroyuki Tashiro
    • 2
  • Akihiro Uehara
    • 1
  • Tohru Saitoh
    • 1
  • Motoki Ozawa
    • 1
  • Takashi Tokuda
    • 3
  • Jun Ohta
    • 3
  1. 1.Vision InstituteNidek Co, LtdGamagoriJapan
  2. 2.Department of MedicineKyushu UniversityFukuokaJapan
  3. 3.Graduate School of Materials ScienceNara Institute of Science and TechnologyNaraJapan

Personalised recommendations