Advertisement

Journal of Artificial Organs

, Volume 8, Issue 3, pp 131–136 | Cite as

Bone tissue engineering with porous hydroxyapatite ceramics

  • Hideki Yoshikawa
  • Akira Myoui
REVIEW

Abstract

The main principle of bone tissue engineering strategy is to use an osteoconductive porous scaffold in combination with osteoinductive molecules or osteogenic cells. The requirements for a scaffold in bone regeneration are: (1) biocompatibility, (2) osteoconductivity, (3) interconnected porous structure, (4) appropriate mechanical strength, and (5) biodegradability. We recently developed a fully interconnected porous hydroxyapatite (IP-CHA) by adopting the “form-gel” technique. IP-CHA has a three-dimensional structure with spherical pores of uniform size that are interconnected by window-like holes; the material also demonstrated adequate compression strength. In animal experiments, IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of bone cells, osteotropic agents, or vasculature into the pores. In this article, we review the accumulated data on bone tissue engineering using the novel scaffold, focusing especially on new techniques in combination with bone morphogenetic protein (BMP) or mesenchymal stem cells.

Key words

Bone Hydroxyapatite ceramics Tissue engineering Mesenchymal cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prolo, DJ, Rodrigo, JJ 1985Contemporary bone graft physiology and surgeryClin Orthop200322342Google Scholar
  2. 2.
    Arrington, ED, Smith, WJ, Chambers, HG, Bucknell, AL, Davino, NA 1996Complications of iliac crest bone graft harvestingClin Orthop329300309Google Scholar
  3. 3.
    Banwart, JC, Asher, MA, Hassanein, RS 1995Iliac crest bone graft harvest donor site morbidity. A statistical evaluationSpine2010551060Google Scholar
  4. 4.
    Younger, EM, Chapman, MW 1989Morbidity at bone graft donor sitesJ Orthop Trauma3192195Google Scholar
  5. 5.
    Bucholz, RW, Carlton, A, Holmes, RE 1987Hydroxyapatite and tricalcium phosphate bone graft substituteOrthop Clin North Am18323334Google Scholar
  6. 6.
    Ishihara, K, Arai, H, Nakabayashi, N, Morita, S, Furuya, KI 1992Adhesive bone cement containing hydroxyapatite particles as bone compatible filterJ Biomed Mater Res26937945Google Scholar
  7. 7.
    Sartoris, DJ, Gershuni, DH, Akeson, WH, Holmes, RE, Resnick, D 1986Coralline hydroxyapatite bone graft substitutes: preliminary report of radiographic evaluationRadiology159133137Google Scholar
  8. 8.
    Fujibayashi, S, Kim, HM, Neo, M, Uchida, M, Kokubo, T, Nakamura, T 2003Repair of segmental long bone defect in rabbit femur using bioactive titanium cylindrical mesh cageBiomaterials2434453451Google Scholar
  9. 9.
    Cornell, CN, Lane, JM, Chapman, M, Merkow, R, Seligson, D, Henry, S, Gustilo, R, Vincent, K 1991Multicenter trial of Collagraft as bone graft substituteJ Orthop Trauma518Google Scholar
  10. 10.
    Holmes, RE, Bucholz, RW, Mooney, V 1987Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric studyJ Orthop Res5114121Google Scholar
  11. 11.
    Bucholz, RW, Carlton, A, Holmes, R 1989Interporous hydroxyapatite as a bone graft substitute in tibial plateau fracturesClin Orthop2405362Google Scholar
  12. 12.
    Uchida, A, Araki, N, Shinto, Y, Yoshikawa, H, Kurisaki, E, Ono, K 1990The use of calcium hydroxyapatite ceramic in bone tumour surgeryJ Bone Joint Surg72B298302Google Scholar
  13. 13.
    Yoshikawa, H, Uchida, A 1999Clinical application of calcium hydroxylapatite ceramic in bone tumor surgeryWise, DL eds. Biomaterials and Bioengineering HandbookMarcel DekkerNew York433455Google Scholar
  14. 14.
    Matsumine, A, Myoui, A, Kusuzaki, K, Araki, N, Seto, M, Yoshikawa, H, Uchida, A 2004Calcium hydroxyapatite ceramic implants in bone tumor surgery. A long-term follow-up studyJ Bone Joint Surg86B719725Google Scholar
  15. 15.
    Ayers, RA, Simske, SJ, Nunes, CR, Wolford, LM 1998Long-term bone ingrowth and residual micro hardness of porous block hydroxyapatite implants in humansJ Oral Maxillofac Surg5612971301Google Scholar
  16. 16.
    Tamai, N, Myoui, A, Tomita, T, Nakase, T, Tanaka, J, Ochi, T, Yoshikawa, H 2002Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivoJ Biomed Mater Res59110117Google Scholar
  17. 17.
    Steinkamp, JA, Hansen, KM, Crissman, HA 1976Flow microfluorometric and light-scatter measurement of nuclear and cytoplasmic size in mammalian cellsJ Histochem Cytochem24292297Google Scholar
  18. 18.
    Martin, RB, Chapman, MW, Sharkey, NA, Zissimos, SL, Bay, B, Shors, EC 1993Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 year after implantationBiomaterials14341348Google Scholar
  19. 19.
    Myoui, A, Tamai, N, Nishikawa, M, Araki, N, Nakase, T, Akita, S, Yoshikawa, H 2004Three-dimensionally engineered hydroxyapatite ceramics with interconnected pores as a bone substitute and tissue engineering scaffoldYaszemski, MJTrantolo, DJLewandrowski, KUHasirci, VAltobelli, DEWise, DL eds. Biomaterials in orthopedicsMarcel DekkerNew York287300Google Scholar
  20. 20.
    Urist, MR 1965Bone: formation by autoinductionScience150893899Google Scholar
  21. 21.
    Wozney, JM, Rosen, V 1998Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repairClin Orthop3462637Google Scholar
  22. 22.
    Miyamoto, S, Takaoka, K, Okada, T, Yoshikawa, H, Hashimoto, J, Suzuki, S, Ono, K 1993Polylactic acid–polyethylene glycol block copolymer: a new biodegradable synthetic carrier for bone morphogenetic proteinClin Orthop294333343Google Scholar
  23. 23.
    Saito, N, Okada, T, Horiuchi, H, Murakami, N, Takahashi, J, Nawata, M, Ota, H, Miyamoto, S, Nozaki, K, Takaoka, K 2001Biodegradable poly lactic acid–polyethylene glycol block copolymers as a BMP delivery system for inducing boneJ Bone Joint Surg83AS92S98Google Scholar
  24. 24.
    Kaito, T, Myoui, A, Takaoka, K, Saito, N, Nishikawa, M, Tamai, N, Ohgushi, H, Yoshikawa, H 2005Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite compositeBiomaterials267379Google Scholar
  25. 25.
    Ohgushi, H, Caplan, AI 1999Stem cell technology and bioceramics: from cell to gene engineeringJ Biomed Mater Res48913927Google Scholar
  26. 26.
    Ohgushi, H, Dohi, Y, Katuda, T, Tamai, S, Tabata, S, Suwa, Y 1996In vitro bone formation by rat marrow cell cultureJ Biomed Mater Res32333340Google Scholar
  27. 27.
    Nishikawa, M, Myoui, A, Ohgushi, H, Ikeuchi, M, Tamai, N, Yoshikawa, H 2004Bone tissue engineering using novel interconnected porous hydroxyapatite ceramics combined with marrow mesenchymal cells: Quantitative and three-dimensional image analysisCell Transplant13367376Google Scholar
  28. 28.
    Nishikawa, M, Ohgushi, H 2004Calcium phosphate ceramics in JapanYaszemski, MJTrantolo, DJLewandrowski, KUHasirci, VAltobelli, DEWise, DL eds. Biomaterials in orthopedicsMarcel DekkerNew York425436Google Scholar
  29. 29.
    Bernard, SL, Picha, GJ 1991The use of coralline hydroxyapatite in a “biocomposite” free flapPlast Reconstr Surg8796105Google Scholar
  30. 30.
    Casabona, F, Martin, I, Muraglia, A, Berrino, P, Santi, P, Cancedda, R, Quarto, R 1998Prefabricated engineered bone flaps: an experimental model of tissue reconstruction in plastic surgeryPlast Reconstr Surg101577581Google Scholar
  31. 31.
    Akita, S, Tamai, N, Myoui, A, Nishikawa, M, Kaito, T, Takaoka, K, Yoshikawa, H 2004Capillary vessel network integration by inserting a vascular pedicle enhances bone formation in tissue-engineered bone using interconnected porous hydroxyapatite ceramicsTissue Eng10789795Google Scholar
  32. 32.
    Wakitani, S, Imoto, K, Yamamoto, T, Saito, M, Murata, N, Yoneda, M 2002Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic kneesOsteoarthritis Cartilage10199206Google Scholar
  33. 33.
    Cook, SD, Patron, LP, Salkeld, SL, Rueger, DC 2003Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogsJ Bone Joint Surg85A116123Google Scholar
  34. 34.
    Hidaka, C, Goodrich, LR, Chen, CT, Warren, RF, Crysta, RG, Nixon, AJ 2003Acceleration of cartilage repair by genetically modified chondrocyte overexpressing bone morphogenetic protein-7J Orthop Res21573583Google Scholar
  35. 35.
    Tamai, N, Myoui, A, Hirao, M, Kaito, T, Ochi, T, Tanaka, J, Takaoka, K, Yoshikawa, H 2005A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA/PEG), and bone morphogenetic protein-2 (rhBMP-2Osteoarthritis Cartilage13405417Google Scholar

Copyright information

© The Japanese Society for Artificial Organs 2005

Authors and Affiliations

  1. 1.Department of OrthopaedicsOsaka University Graduate School of MedicineSuitaJapan

Personalised recommendations