Advertisement

A novel feature descriptor for image retrieval by combining modified color histogram and diagonally symmetric co-occurrence texture pattern

  • Ayan Kumar BhuniaEmail author
  • Avirup Bhattacharyya
  • Prithaj Banerjee
  • Partha Pratim Roy
  • Subrahmanyam Murala
Theoretical advances

Abstract

In this paper, we have proposed a novel feature descriptors combining color and texture information collectively. In our proposed color descriptor component, the inter-channel relationship between Hue (H) and Saturation (S) channels in the HSV color space has been explored which was not done earlier. We have quantized the H channel into a number of bins and performed the voting with saturation values and vice versa by following a principle similar to that of the HOG descriptor, where orientation of the gradient is quantized into a certain number of bins and voting is done with gradient magnitude. This helps us to study the nature of variation of saturation with variation in Hue and nature of variation of Hue with the variation in saturation. The texture component of our descriptor considers the co-occurrence relationship between the pixels symmetric about both the diagonals of a 3 × 3 window. Our work is inspired from the work done by Dubey et al. (IEEE Signal Process Lett 22(9):1215–1219, [2015]). These two components, viz. color and texture information individually perform better than existing texture and color descriptors. Moreover, when concatenated the proposed descriptors provide a significant improvement over existing descriptors for content base color image retrieval. The proposed descriptor has been tested for image retrieval on five databases, including texture image databases—MIT-VisTex database and Salzburg texture database and natural scene databases Corel 1K, Corel 5K and Corel 10K. The precision and recall values experimented on these databases are compared with some state-of-art local patterns. The proposed method provided satisfactory results from the experiments.

Keywords

Diagonally symmetric co-occurrence pattern Gray level co-occurrence matrix Histogram quantization Corel 1K Corel 5K Corel 10K MIT-VisTex database STex database 

Notes

References

  1. 1.
    Dubey SR, Singh SK, Singh RK (2015) Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Signal Process Lett 22(9):1215–1219Google Scholar
  2. 2.
    Haralick RM, Shanmugam K (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621Google Scholar
  3. 3.
    Zhang J, Li GL, He SW (2008) Texture-based image retrieval by edge detection matching GLCM. In: Proceedings—10th IEEE international conference on high performance computing and communications, HPCC, pp 782–786Google Scholar
  4. 4.
    Partio M, Cramariuc B, Gabbouj M, Visa A (2002) Rock texture retrieval using gray level co-occurrence matrix. In: Proceedings 5th Nord SignalGoogle Scholar
  5. 5.
    de Siqueira FR, Schwartz WR, Pedrini H (2013) Multi-scale gray level co-occurrence matrices for texture description. Neurocomputing 120:336–345Google Scholar
  6. 6.
    Li Y, Zhou C, Geng B, Xu C, Liu H (2013) A comprehensive study on learning to rank for content-based image retrieval. Signal Process 93(6):1426–1434Google Scholar
  7. 7.
    Fadaei S, Amirfattahi R, Ahmadzadeh MR (2017) Local derivative radial patterns: a new texture descriptor for content-based image retrieval. Signal Process 137:274–286Google Scholar
  8. 8.
    Li W, Pan H, Li P, Xie X, Zhang Z (2017) A medical image retrieval method based on texture block coding tree. Signal Process Image Commun 59:131–139Google Scholar
  9. 9.
    Tiwari AK, Kanhangad V, Pachori RB (2017) Histogram refinement for texture descriptor based image retrieval. Signal Process Image Commun 53:73–85Google Scholar
  10. 10.
    Banerjee P, Bhunia AK, Bhattacharyya A, Roy PP, Murala S (2017) Local neighborhood intensity pattern: a new texture feature descriptor for image retrieval. arXiv Prepr. arXiv:1709.02463
  11. 11.
    Palm C (2004) Color texture classification by integrative co-occurrence matrices. Pattern Recognit 37(5):965–976Google Scholar
  12. 12.
    Jeong S, Won CS, Gray RM (2004) Image retrieval using color histograms generated by Gauss mixture vector quantization. Comput Vis Image Underst 94(1–3):44–66Google Scholar
  13. 13.
    Pass G, Zabih R, Miller J (1998) Comparing images using color coherence vectors. In: Proceedings fourth ACM international conference multimedia (MULTIMEDIA’96), pp 1–14Google Scholar
  14. 14.
    Subrahmanyam M, Wu QMJ, Maheshwari RP, Balasubramanian R (2013) Modified color motif co-occurrence matrix for image indexing and retrieval. Comput Electr Eng 39(3):762–774Google Scholar
  15. 15.
    Baraldi A, Parmiggiani F (1995) An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Trans Geosci Remote Sens 33(2):293–304Google Scholar
  16. 16.
    Kovalev V, Petrou M (1996) Multidimensional co-occurrence matrices for object recognition and matching. Graph Model Image Process 58(3):187–197Google Scholar
  17. 17.
    Davis LS, Johns SA, Aggarwal JK (1979) Texture analysis using generalized co-occurrence matrices. IEEE Trans Pattern Anal Mach Intell 1(3):251–259Google Scholar
  18. 18.
    Vadivel A, Sural S, Majumdar AK (2007) An integrated color and intensity co-occurrence matrix. Pattern Recognit Lett 28(8):974–983Google Scholar
  19. 19.
    Huang J, Kumar SR, Mitra M, Zhu W-J, Zabih R (1997) Image indexing using color correlograms. In: Proceedings, 1997 IEEE computer society conference on computer vision and pattern recognition, pp 762–768Google Scholar
  20. 20.
    Huang J, Kumar SR, Mitra M (1997) Combining supervised learning with color correlograms for content-based image retrieval. In: Proceedings fifth ACM international conference multimedia—multimedia’97, pp 325–334Google Scholar
  21. 21.
    Park ST, Seo K, Jang D (2005) Expert system based on artificial neural networks for content-based image retrieval. Expert Syst Appl 29(3):589–597Google Scholar
  22. 22.
    Jhanwar N, Chaudhuri S, Seetharaman G, Zavidovique B (2004) Content based image retrieval using motif cooccurrence matrix. Image Vis Comput 22(14):1211–1220Google Scholar
  23. 23.
    Vipparthi SK, Nagar SK (2014) Multi-joint histogram based modelling for image indexing and retrieval. Comput Electr Eng 40(8):163–173Google Scholar
  24. 24.
    Balmelli L, Mojsilovic A (1999) Wavelet domain features for texture description, classification and replicability analysis. In: Proceedings international conference on image processing, ICIP 99, vol 4, pp 440–444Google Scholar
  25. 25.
    Ardizzoni S, Bartolini I, Patella M (1999) Windsurf: region-based image retrieval using wavelets. In: Proceedings tenth international workshop database expert system application DEXA 99, pp 167–173Google Scholar
  26. 26.
    Wang JZ, Wiederhold G, Firschein O, Wei SX (1997) Content-based image indexing and searching using Daubechies’ wavelets. Int J Digit Libr 1(4):311–328Google Scholar
  27. 27.
    Moghaddam HA, Khajoie TT, Rouhi AH, Tarzjan MS (2005) Wavelet correlogram: a new approach for image indexing and retrieval. Pattern Recognit 38(12):2506–2518Google Scholar
  28. 28.
    Manjunath BS (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842Google Scholar
  29. 29.
    Ahmadian A, Mostafa A (2003) An efficient texture classification algorithm using Gabor wavelet. In: Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society (IEEE Cat. No. 03CH37439), vol 1, pp 930–933Google Scholar
  30. 30.
    Moghaddam HA, Dehaji MN (2013) Enhanced Gabor wavelet correlogram feature for image indexing and retrieval. Pattern Anal Appl 16(2):163–177MathSciNetGoogle Scholar
  31. 31.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987zbMATHGoogle Scholar
  32. 32.
    Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663MathSciNetzbMATHGoogle Scholar
  33. 33.
    Takala V, Ahonen T, Pietikainen M (2005) Block-based methods for image retrieval using local binary patterns. In: Lecture notes in computer science, vol 3540, pp 882–891Google Scholar
  34. 34.
    Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118MathSciNetzbMATHGoogle Scholar
  35. 35.
    Heikkilä M, Pietikäinen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. In: Computer vision, graphics and image processing. Springer, Berlin, Heidelberg, pp 58–69Google Scholar
  36. 36.
    He Y, Sang N, Gao C (2012) Multi-structure local binary patterns for texture classification. Pattern Anal Appl 16(4):595–607MathSciNetGoogle Scholar
  37. 37.
    Qian X, Hua XS, Chen P, Ke L (2011) PLBP: an effective local binary patterns texture descriptor with pyramid representation. Pattern Recognit 44(10–11):2502–2515Google Scholar
  38. 38.
    Tlig L, Sayadi M, Fnaiech F (2012) A new fuzzy segmentation approach based on S-FCM type 2 using LBP-GCO features. Signal Process Image Commun 27(6):694–708Google Scholar
  39. 39.
    Papakostas GA, Koulouriotis DE, Karakasis EG, Tourassis VD (2013) Moment-based local binary patterns: a novel descriptor for invariant pattern recognition applications. Neurocomputing 99:358–371Google Scholar
  40. 40.
    Murala S, Maheshwari RP, Balasubramanian R (2012) Directional local extrema patterns: a new descriptor for content based image retrieval. Int J Multimed Inf Retr 1(3):191–203zbMATHGoogle Scholar
  41. 41.
    Dubey SR, Singh SK, Singh RK (2016) Local bit-plane decoded pattern: a novel feature descriptor for biomedical image retrieval. IEEE J Biomed Heal Inform 20(4):1139–1147Google Scholar
  42. 42.
    Yao CH, Chen SY (2002) Retrieval of translated, rotated and scaled color textures. Pattern Recognit 36(4):913–929Google Scholar
  43. 43.
    Murala S, Wu QMJ (2014) Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J Biomed Heal Inform 18(3):929–938Google Scholar
  44. 44.
    Hamouchene I, Aouat S (2014) A new texture analysis approach for iris recognition. AASRI Proc 9:2–7Google Scholar
  45. 45.
    Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650MathSciNetzbMATHGoogle Scholar
  46. 46.
    Wu X, Sun J, Fan G, Wang Z (2015) Improved local ternary patterns for automatic target recognition in infrared imagery. Sensors (Switzerland) 15(3):6399–6418Google Scholar
  47. 47.
    Ren J, Jiang X, Yuan J (2013) Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans Image Process 22(10):4049–4060MathSciNetzbMATHGoogle Scholar
  48. 48.
    Zhao Y, Jia W, Hu RX, Min H (2013) Completed robust local binary pattern for texture classification. Neurocomputing 106:68–76Google Scholar
  49. 49.
    Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886MathSciNetzbMATHGoogle Scholar
  50. 50.
    Jacob IJ, Srinivasagan KG, Jayapriya K (2014) Local oppugnant color texture pattern for image retrieval system. Pattern Recognit Lett 42(1):72–78Google Scholar
  51. 51.
    Murala S, Wu QMJ (2015) Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing 149(PC):1502–1514Google Scholar
  52. 52.
    Bhunia AK, Kishore PSR, Mukherjee P, Das A, Roy PP (2019) Texture synthesis guided deep hashing for texture image retrieval. In: IEEE winter conference on applications of computer vision (WACV), pp 609–618Google Scholar
  53. 53.
    Zhang H, Wang S, Xu X, Chow TWS, Wu QMJ (2018) Tree2Vector: learning a vectorial representation for tree-structured data. IEEE Trans Neural Netw Learn Syst 99:1–15MathSciNetGoogle Scholar
  54. 54.
    Wang T et al (2018) Jumping and refined local pattern for texture classification. IEEE Access 6:64416–64426Google Scholar
  55. 55.
    Dong Y, Wu H, Li X, Zhou C, Wu Q (2018) Multiscale symmetric dense micro-block difference for texture classification. IEEE Trans Circuits Syst Video Technol.  https://doi.org/10.1109/TCSVT.2018.2883825 Google Scholar
  56. 56.
    Dong Y, Feng J, Yang C, Wang X, Zheng L, Pu J (2018) Multi-scale counting and difference representation for texture classification. Vis Comput 34(10):1315–1324Google Scholar
  57. 57.
    Dong Y, Feng J, Liang L, Zheng L, Wu Q (2017) Multiscale sampling based texture image classification. IEEE Signal Process Lett 24(5):614–618Google Scholar
  58. 58.
    Dong Y, Tao D, Li X, Ma J, Pu J (2015) Texture classification and retrieval using shearlets and linear regression. IEEE Trans Cybern 45(3):358–369Google Scholar
  59. 59.
    Verma M, Raman B, Murala S (2015) Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165:255–269Google Scholar
  60. 60.
    Liu G-H, Yang J-Y (2013) Content-based image retrieval using color difference histogram. Pattern Recognit 46(1):188–198Google Scholar
  61. 61.
    Walia E, Pal A (2014) Fusion framework for effective color image retrieval. J Vis Commun Image Represent 25(6):1335–1348Google Scholar
  62. 62.
    Lu Z, Jiang X, Kot A (2017) A novel LBP-based color descriptor for face recognition. In: 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1857–1861Google Scholar
  63. 63.
    Ahmadian A, Mostafa A, Abolhassani M, Salimpour Y (2005) A texture classification method for diffused liver diseases using Gabor wavelets. In: Conference proceedings IEEE engineering in medicine and biology society, vol 2(c), pp 1567–1570Google Scholar
  64. 64.
    Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49(2):117–125Google Scholar
  65. 65.
    Ning J, Zhang L, Zhang D, Wu C (2009) Robust object tracking using joint color-texture histogram. Int J Pattern Recognit Artif Intell 23(07):1245–1263Google Scholar
  66. 66.
    Moore S, Bowden R (2011) Local binary patterns for multi-view facial expression recognition. Comput Vis Image Underst 115(4):541–558Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Ayan Kumar Bhunia
    • 1
    Email author
  • Avirup Bhattacharyya
    • 1
  • Prithaj Banerjee
    • 2
  • Partha Pratim Roy
    • 3
  • Subrahmanyam Murala
    • 4
  1. 1.Department of ECEInstitute of Engineering and ManagementKolkataIndia
  2. 2.Department of CSEInstitute of Engineering and ManagementKolkataIndia
  3. 3.Department of CSEIndian Institute of Technology RoorkeeRoorkeeIndia
  4. 4.Department of EEIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations