Multi-channel local ternary pattern for content-based image retrieval

  • Megha Agarwal
  • Amit SinghalEmail author
  • Brejesh Lall
Industrial and commercial application


A feature based on a single modality such as color or texture is not sufficient to investigate the appearance variation across multiple images. In this paper, a novel feature referred to as multi-channel local ternary pattern is proposed for image retrieval. The proposed method captures cross-channel color–texture information through the combination of HV, SV and VV channels obtained from HSV representation of the image. Not only texture statistics extracted in this manner contain color information but local texture information is also incorporated in such representations. The effectiveness of the proposed image retrieval method is measured by performing experiments on popular natural, face and texture databases including Corel 1000, Corel 10k, CMU-PIE, STex and MIT VisTex, and results are compared with the existing state-of-the-art techniques. Retrieval results clearly highlight the superior performance of the proposed approach in terms of average precision and average recall.


CMU-PIE database Content-based image retrieval (CBIR) Local ternary pattern (LTP) Corel database MIT VisTex database STex database 



  1. 1.
    Liu Y, Zhang D, Lu G, Ma W-Y (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recognit 40:262–282CrossRefzbMATHGoogle Scholar
  2. 2.
    Xu Y, Li Z, Yang J, Zhang D (2017) A survey of dictionary learning algorithms for face recognition. IEEE Access 5:8502–8514CrossRefGoogle Scholar
  3. 3.
    Swain MJ, Ballard DH (1990) Indexing via color histograms. In: Proceedings third international conference on computer vision, pp 390–393Google Scholar
  4. 4.
    Tang Z, Zhang X, Dai X, Yang J, Wu T (2013) Robust image hash function using local color features. AEU Int J Electron Commun 67(8):717–722CrossRefGoogle Scholar
  5. 5.
    Zhang D, Islam MM, Lu G (2012) A review on automatic image annotation techniques. Pattern Recognit 45(1):346–362CrossRefGoogle Scholar
  6. 6.
    Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recognit 29:51–59CrossRefGoogle Scholar
  7. 7.
    Murala S, Maheshwari RP, Balasubramanian R (2012) Directional local extrema patterns: a new descriptor for content based image retrieval. Int J Multimed Inf Retr 1(3):191–203CrossRefzbMATHGoogle Scholar
  8. 8.
    Heikkilä M, Pietikäinen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. In: Computer vision, graphics and image processing. Springer, Berlin, pp 58–69Google Scholar
  9. 9.
    Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Agarwal M, Maheshwari RP (2012) Átrous gradient structure descriptor for content based image retrieval. Int J Multimed Inf Retr 1(2):129–138CrossRefGoogle Scholar
  11. 11.
    Jhanwar N, Chaudhuri S, Seetharaman G, Zavidovique B (2004) Content based image retrieval using motif cooccurrence matrix. Image Vis Comput 22(14):1211–1220CrossRefGoogle Scholar
  12. 12.
    Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Murala S, Wu QMJ (2013) Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119:399–412CrossRefGoogle Scholar
  14. 14.
    Agarwal M, Singhal A, Lall B (2018) 3D local ternary co-occurrence patterns for natural, texture, face and bio medical image retrieval. Neurocomputing 313:333–345CrossRefGoogle Scholar
  15. 15.
    Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit 43:706–719CrossRefzbMATHGoogle Scholar
  16. 16.
    Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ren H, Sun J, Hao Y, Yan X, Liu Y (2014) Uniform local derivative patterns and their application in face recognition. J Signal Process Syst 74(3):405–416CrossRefGoogle Scholar
  18. 18.
    Li Z, Tang J, He X (2018) Robust structured nonnegative matrix factorization for image representation. IEEE Trans Neural Netw Learn Syst 29(5):1947–1960MathSciNetCrossRefGoogle Scholar
  19. 19.
    Li Z, Tang J (2015) Unsupervised feature selection via nonnegative spectral analysis and redundancy control. IEEE Trans Image Process 24(12):5343–5355MathSciNetCrossRefGoogle Scholar
  20. 20.
    Murala S, Maheshwari R, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content based image retrieval. IEEE Trans Image Process 21(5):2874–2886MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Murala S, Maheshwari RP, Balasubramanian R (2012) Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Signal Process 92(6):1467–1479CrossRefzbMATHGoogle Scholar
  22. 22.
    Qian X, Hua XS, Chen P, Ke L (2011) PLBP: an effective local binary patterns texture descriptor with pyramid representation. Pattern Recognit 44(10):2502–2515CrossRefGoogle Scholar
  23. 23.
    Papakostas G, Koulouriotis D, Karakasis E, Tourassis V (2013) Moment-based local binary patterns: a descriptor for invariant pattern recognition applications. Neurocomputing 99:358–371CrossRefGoogle Scholar
  24. 24.
    Murala S, Wu QMJ (2014) Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J Biomed Health Inform 18(3):929–938CrossRefGoogle Scholar
  25. 25.
    Chakraborty S, Singh SK, Chakraborty P (2018) Local gradient hexa pattern: a descriptor for face recognition and retrieval. IEEE Trans Circuits Syst Video Technol 28(1):171–180CrossRefGoogle Scholar
  26. 26.
    Fan KC, Hung TY (2014) A novel local pattern descriptor: local vector pattern in high-order derivative space for face recognition. IEEE Trans Image Process 23(5):2877–2891MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Vadivel A, Sural S, Majumdar A (2007) An integrated color and intensity co-occurrence matrix. Pattern Recognit Lett 28(8):974–983CrossRefGoogle Scholar
  28. 28.
    Agarwal M, Maheshwari RP (2011) Weight co-occurrence based integrated color and intensity matrix for cbir. TECHNIA Int J Comput Sci Commun Technol 4(1):651–656Google Scholar
  29. 29.
    Jacob IJ, Srinivasagan K, Jayapriya K (2014) Local oppugnant color texture pattern for image retrieval system. Pattern Recognit Lett 42:72–78CrossRefGoogle Scholar
  30. 30.
    Yao CH, Chen SY (2003) Retrieval of translated, rotated and scaled color textures. Pattern Recognit 36(4):913–929CrossRefGoogle Scholar
  31. 31.
    Reddy AH, Chandra NS (2015) Local oppugnant color space extrema patterns for content based natural and texture image retrieval. AEU Int J Electron Commun 69(1):290–298CrossRefGoogle Scholar
  32. 32.
    Verma M, Raman B, Murala S (2015) Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165:255–269CrossRefGoogle Scholar
  33. 33.
    Dey M, Raman B, Verma M (2016) A novel colour- and texture-based image retrieval technique using multi-resolution local extrema peak valley pattern and RGB colour histogram. Pattern Anal Appl 19(4):1159–1179MathSciNetCrossRefGoogle Scholar
  34. 34.
    Xu X, Geng W, Ju R, Yang Y, Ren T, Wu G (2014) OBSIR: object-based stereo image retrieval. In: IEEE international conference on multimedia and expo (ICME), pp 1–6Google Scholar
  35. 35.
    Murala S, Wu QMJ (2015) Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing 149:1502–1514CrossRefGoogle Scholar
  36. 36.
    Li Z, Tang J (2015) Weakly supervised deep metric learning for community-contributed image retrieval. IEEE Trans Multimed 17(11):1989–1999CrossRefGoogle Scholar
  37. 37.
    Wang JZ, Li J, Wiederhold G (2001) SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23(9):947–963CrossRefGoogle Scholar
  38. 38.
    Liu GH, Yang JY (2015) Content-based image retrieval using computational visual attention model. Pattern Recognit 48(8):2554–2566MathSciNetCrossRefGoogle Scholar
  39. 39.
    Kwitt R, Meerwald P (2012) Salzburg texture image database. Accessed 10 Feb 2018
  40. 40.
    MIT Vision and Modeling Group (2002) Vision texture, Cambridge. Accessed 10 Feb 2018
  41. 41.
    Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jaypee Institute of Information Technology (JIIT)NoidaIndia
  2. 2.Bennett UniversityNoidaIndia
  3. 3.Indian Institute of Technology Delhi (IITD)DelhiIndia

Personalised recommendations