Pattern Analysis and Applications

, Volume 22, Issue 3, pp 1233–1242 | Cite as

Local curve pattern for content-based image retrieval

  • T. G. Subash KumarEmail author
  • V. Nagarajan
Short Paper


Local binary pattern (LBP) is an effective image descriptor that is being used in various computer vision applications such as detection of faces, object classification, target detection, image retrieval etc., Since its success, different versions of LBP have been proposed to overcome its limitations. These techniques derive the pattern from the predefined set of image pixels which restrict the amount of information captured by them. In this work, a new approach is proposed in which the image pixels used to derive the pattern is selected based on the image characteristics. This technique uses image line/curve characteristics to derive the local pattern which we call it as local curve pattern. The line and curve characteristics are considered since they are the dominant components of an image and are used to represent the image effectively. The proposed method is evaluated using three different databases (viz Corel 1K, Corel 10K and Brodatz), and experimental result shows that the proposed method performs better than the conventional local pattern techniques.


Local binary pattern Local curve pattern Image retrieval 



The authors are very much thankful to the editor and anonymous reviewers for their valuable comments, suggestions and other directions to improve the quality of this manuscript. Also, authors thank the management of Sathyabama University and Adhiparasakthi engineering college for their constant support and motivation.


  1. 1.
    Dong J, Yuan X, Xiong F (2017) Global and local oriented edge magnitude patterns for texture classification. Int J Pattern Recognit Artif Intell 31(3):1750007CrossRefGoogle Scholar
  2. 2.
    Belkasim S, Hong X, Basir O (2007) Content based image retrieval using discrete wavelet transform”. Int J Pattern Recognit Artif Intell 18(1):19–32CrossRefGoogle Scholar
  3. 3.
    Liua L, Zhaoa L, Longa Y, Kuanga G, Fieguth P (2012) Extended local binary patterns for texture classification”. Image Vis Comput 30(2):86–99CrossRefGoogle Scholar
  4. 4.
    Pang Y et al (2011) Efficient HOG human detection. Sig Process 91(4):773–781zbMATHCrossRefGoogle Scholar
  5. 5.
    Hongbo Y, Xia H (2014) Histogram modification using grey-level co-occurrence matrix for image contrast enhancement. IET Image Proc 8(12):782–793CrossRefGoogle Scholar
  6. 6.
    Cheung W et al (2009) n-SIFT: n-Dimensional scale invariant feature transform. IEEE Trans Image Process 18(9):2012–2021MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Uzun IS, Amira A, Bouridane A (2005) FPGA implementations of fast Fourier transforms for real-time signal and image processing. IEE Proc Vis Image Signal Process 152(3):283–296CrossRefGoogle Scholar
  8. 8.
    Phamila YAV, Amutha R (2014) Discrete Cosine transform based fusion of multi-focus images for visual sensor networks. Signal Process 95:161–170CrossRefGoogle Scholar
  9. 9.
    Farsi H, Mohamadzadeh S (2013) Colour and texture feature-based image retrieval by using hadamard matrix in discrete wavelet transform. IET Image Proc 7(3):212–218MathSciNetCrossRefGoogle Scholar
  10. 10.
    Huang Q, Hao B, Chang S (2016) Adaptive digital ridgelet transform and its application in image denoising. Elsevier Digital Signal Process 52:45–54CrossRefGoogle Scholar
  11. 11.
    Asmare MH, Asirvadam VS, Hani AFM (2015) Image enhancement based on contourlet transform. SIViP 9(7):1679–1690CrossRefGoogle Scholar
  12. 12.
    Lakhonchai P, Sampo J, Sumetkijakan S (2010) Shearlet transforms and directional regularities. Int J Wavelets Multiresolut Inf Process 8(5):743–771MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Murphy JM, Le Moigne J, Harding David J (2016) Automatic image registration of multimodal remotely sensed data with global shearlet features. IEEE Trans Geosci Remote Sens 54(3):1685–1704CrossRefGoogle Scholar
  14. 14.
    Quellec G, Lamard M, Cazuguel G, Cochener B, Roux C (2012) Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Trans Image Process 21(4):1613–1623MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Dong Y, Tao D, Li X, Ma J, Pu J (2015) Texture classification and retrieval using shearlets and linear regression. IEEE Trans Cybern 45(3):358–369CrossRefGoogle Scholar
  16. 16.
    Dubey SR, Singh SK, Singh RK (2015) Local wavelet pattern: a new feature descriptor for image retrieval in medical ct databases. IEEE Trans Image Process 24(12):5892–5903MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    He J, Ji H, Yang X (2013) Rotation invariant texture descriptor using local shearlet-based energy histograms. IEEE Signal Process Lett 20(9):905–908CrossRefGoogle Scholar
  18. 18.
    Alahmadi A et al (2017) Passive detection of image forgery using DCT and local binary pattern. SIViP 11(1):81–88MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recognit 29(1):51–59CrossRefGoogle Scholar
  20. 20.
    Takala V, Ahonen T, Pietikäinen M (2005) Block-based methods for image retrieval using local binary patterns. In: Kalviainen H, Parkkinen J, Kaarna A (eds) Image analysis volume 3540 of the series Lecture Notes in Computer Science. Springer, Berlin, pp 882–891Google Scholar
  21. 21.
    Liu Li et al (2016) Extended local binary patterns for face recognition. Inf Sci 358–359:56–72CrossRefGoogle Scholar
  22. 22.
    Yu W, Gan L, Yang S, Ding Y, Jiang P, Wang J, Li S (2014) An improved LBP algorithm for texture and face classification. SIViP 8(Supplement 1):155–161CrossRefGoogle Scholar
  23. 23.
    Florindo JB, Bruno OM (2016) Local fractal dimension and binary patterns in texture recognition. Pattern Recognit Lett 78:22–27CrossRefGoogle Scholar
  24. 24.
    Hussain M et al (2013) Gender recognition from face images with dyadic wavelet transform and local binary pattern. Int J Artif Intell Tools 22:1360018CrossRefGoogle Scholar
  25. 25.
    He S, Soraghan JJ, O’Reilly BF, Xing D (2009) Quantitative analysis of facial paralysis using local binary patterns in biomedical videos. IEEE Trans Biomed Eng 56(7):1864–1870CrossRefGoogle Scholar
  26. 26.
    Nannia L, Luminia A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49(2):117–125CrossRefGoogle Scholar
  27. 27.
    Suruliandi A, Murugeswari G, Arockia Jansi Rani P (2015) Empirical evaluation of generic weighted cubicle pattern and LBP derivatives for abnormality detection in mammogram images. Int J Image Graph 15:1550001CrossRefGoogle Scholar
  28. 28.
    Chen K et al (2017) Attribute-based supervised deep learning model for action recognition. Front Comput Sci 11(2):219–229MathSciNetCrossRefGoogle Scholar
  29. 29.
    Oyedotun OK et al (2017) Deep learning in vision-based static hand gesture recognition. Neural Comput Appl 28(12):3941–3951CrossRefGoogle Scholar
  30. 30.
    Mühling M et al (2017) Deep learning for content-based video retrieval in film and television production. Multimed Tools Appl 76(21):22169–22194CrossRefGoogle Scholar
  31. 31.
    Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. In: Proceedings of advances in neural information processing systems, vol 25, pp 1090–1098Google Scholar
  32. 32.
    Chen AT-Y et al. (2017) Convolutional neural network acceleration with hardware/software co-design. Appl Intell 48(5):1288–1301Google Scholar
  33. 33.
    Xi M et al (2016) Local binary pattern network: a deep learning approach for face recognition. In: Image processing (ICIP), September 2016Google Scholar
  34. 34.
    Zhang H et al (2017) Object-level video advertising: an optimization framework. IEEE Trans Ind Inf 13(2):520–531CrossRefGoogle Scholar
  35. 35.
    Yang W et al (2016) Face recognition using adaptive local ternary patterns method. Neurocomputing 213:183–190CrossRefGoogle Scholar
  36. 36.
    Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Guo Z, Zhang L, Zhang D (2010) A completed modelling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit 43(3):706–719zbMATHCrossRefGoogle Scholar
  39. 39.
    Zhu Z et al (2015) An adaptive hybrid pattern for noise-robust texture analysis. Pattern Recogn 48(8):2592–2608CrossRefGoogle Scholar
  40. 40.
    Liu L, Lao S, Fieguth PW, Wang X, Pietikäinen M (2016) Median robust extended local binary pattern for texture classification. IEEE Trans Image Process 25(3):1368–1381MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Rahtua E, Heikkiläa J, Ojansivub V, Ahonenc T (2012) Local phase quantization for blur-insensitive image analysis. Image Vis Comput 30(8):501–512CrossRefGoogle Scholar
  42. 42.
    Iakovidis DK, Keramidas EG, Maroulis D (2008) Fuzzy local binary patterns for ultrasound texture characterization. In: Campilho A, Kamel M (eds) Image analysis and recognition (Lecture Notes in Computer Science). Springer, Berlin, pp 750–759CrossRefGoogle Scholar
  43. 43.
    Fathi A, Naghsh-Nilchi AR (2012) Noise tolerant local binary pattern operator for efficient texture analysis. Pattern Recognit Lett 33(9):1093–1100CrossRefGoogle Scholar
  44. 44.
    Ren J, Jiang X, Yuan J (2013) Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans Image Process 22(10):4049–4060MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Ahmed F (2012) Gradient directional pattern: a robust feature descriptor for facial expression recognition. IEEE Electron Lett 48(19):1203–1204CrossRefGoogle Scholar
  46. 46.
    Vipparthi SK, Murala S, Gonde AB, Wu QMJ (2016) Local directional mask maximum edge patterns for image retrieval and face recognition. IET Comput Vis 10(3):182–192CrossRefGoogle Scholar
  47. 47.
    Huang W, Yin H (2017) Robust face recognition with structural binary gradient patterns. Pattern Recognit 68:126–140CrossRefGoogle Scholar
  48. 48.
    Al-Berry MN, Salem MA-M, Ebeid HM, Hussein AS, Tolba MF (2016) Fusing directional wavelet local binary pattern and moments for human action recognition. IET Comput Vis 10(2):153–162CrossRefGoogle Scholar
  49. 49.
    Murala S, Maheshwari RP, Balasubramanian R (2012) Directional binary wavelet patterns for biomedical image indexing and retrieval. J Med Syst 36(5):2865–2879CrossRefGoogle Scholar
  50. 50.
    Ge H (2010) Gabor directional binary pattern: an image descriptor for gaze estimation. EURASIP J Adv Signal Process 2010: 807612CrossRefGoogle Scholar
  51. 51.
    Dubey SR, Singh SK, Singh RK (2016) Multichannel decoded local binary patterns for content-based image retrieval. IEEE Trans Image Process 25(9):4018–4032MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Ferraz CT et al (2014) Object recognition based on bag of features and a new local pattern descriptor. Int J Pattern Recognit Artif Intell 28(8):1455010CrossRefGoogle Scholar
  53. 53.
    Pei W-J, Zhang Y-L, Zhang Y, Zheng C-H (2014) Pedestrian detection based on HOG and LBP. In: Huang DS, Bevilacqua V, Premaratne P (eds) Intelligent computing theory, volume 8588 of the series Lecture Notes in Computer Science. Springer, Cham, pp 715–720Google Scholar
  54. 54.
    Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987zbMATHCrossRefGoogle Scholar
  56. 56.
    Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: applications to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041zbMATHCrossRefGoogle Scholar
  57. 57.
    Corel 1K database from Accessed Mar 2017
  58. 58.
  59. 59.
  60. 60.
    Dubey SR, Singh SK, Singh RK (2015) Boosting local binary pattern with bag-of-filters for content based image retrieval. In: IEEE UP section conference on electrical computer and electronics (UPCON), December 2015Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ECE, Faculty of Electrical and ElectronicsSathyabama UniversityChennaiIndia
  2. 2.Adhiparasakthi Engineering CollegeMelmaruvathurIndia

Personalised recommendations