A novel binary feature descriptor to discriminate normal and abnormal chest CT images using dissimilarity measures

  • Praveen Kumar Reddy YelampalliEmail author
  • Jagadish Nayak
  • Vilas Haridas Gaidhane
Short paper


In this paper, a new feature descriptor local diagonal Laplacian pattern (LDLP) is proposed to separate the normal and emphysematous lesions in computed tomographic (CT) images containing pulmonary emphysema. LDLP employs a diagonal element approach in which the relationship of the centre pixel with the diagonal elements is obtained using the second-order derivatives (Laplacian). This results in a low-dimensional feature vector with richer information about the local structure. In the proposed framework, the feature histograms of chest CT image slices of EMPHYSEMA database are first determined. Further, the distance between the features of normal and emphysematous tissues is measured and analysed using ANOVA statistical method. Furthermore, a four-class classification is performed using an artificial neural network classifier. The classification performance of the proposed LDLP approach is compared with the prominent methods like local binary pattern, local tetra pattern, and local diagonal extrema pattern. The observational results show that the LDLP outperforms the existing binary feature descriptors in the segregation and classification of healthy and abnormal chest CT images.


Binary patterns Computed tomography Pulmonary emphysema Distance measures Statistical analysis Classification Artificial neural network classifier 



  1. 1.
    Fiel B (1996) Chronic obstructive pulmonary disease. Drugs 52(2):55–61CrossRefGoogle Scholar
  2. 2.
    Webb WR, Muller NL, Ndaidich DP (2014) High-resolution CT of the lung. Lippincott Williams Wilkins, BerlinGoogle Scholar
  3. 3.
    McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1(2):91–108CrossRefGoogle Scholar
  4. 4.
    Nayak J, Bhat PS, Acharya UR, Faust O, Min LC (2009) Computer based identification of cataract and cataract surgery efficacy using optical image. J Mech Med Biol 9:589–607CrossRefGoogle Scholar
  5. 5.
    Herrmann K, Czernin J, Wolin EM, Gupta P, Barrio M, Gutierrez A, Schiepers C, Mosessian S, Phelps ME, Auerbach SA (2015) Impact of \( ^{68} \)Ga-DOTATATE PET/CT on the management of neuroendocrine tumors: the referring Physician’s perspective. J Nucl Med 56(1):70–75CrossRefGoogle Scholar
  6. 6.
    Ojala T, Pietikäinen M, Harwood D (1994) Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: 12th International conference on pattern recognition, pp 582–585Google Scholar
  7. 7.
    Murala S, Maheswari RP, Balasubramanian R (2012) Directional binary wavelet patterns for biomedical image indexing and retrieval. J Med Syst 36(5):2865–2879CrossRefGoogle Scholar
  8. 8.
    Murala S, Wu QMJ (2013) Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119:399–412CrossRefGoogle Scholar
  9. 9.
    Qi X, Shen L, Zhao G, Li Q, Pietikänen M (2015) Globally rotation invariant multi-scale co-occurrence local binary pattern. Image Vis Comput 43:16–26CrossRefGoogle Scholar
  10. 10.
    Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49:117–125CrossRefGoogle Scholar
  11. 11.
    Sørensen L, Shaker SB, de Bruijne M (2010) Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans Med Imaging 29(2):559–569CrossRefGoogle Scholar
  12. 12.
    Dubey SR, Singh SK, Singh RK (2015) Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Signal Process Lett 22(9):1215–1219CrossRefGoogle Scholar
  13. 13.
    Chen Y-T, Chen MC (2011) Using Chi-square statistics to measure similarities for text categorization. Expert Syst Appl 38(4):3085–3090CrossRefGoogle Scholar
  14. 14.
    Gaidhane VH, Hote YV, Singh V (2014) An efficient approach for face recognition based on common eigenvalues. Pattern Recogn 47:1869–1879CrossRefGoogle Scholar
  15. 15.
    Liberti L, Lavor C, Maculan N, Mucherino A (2014) Euclidean distance geometry and applications. SIAM Rev 56(4):3–69MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Murala S, Maheswari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with higher-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Procss 19(6):1635–1650MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gupta R, Patil H, Mittal A (2010) Robust order-based methods for feature description. In: IEEE computer society conference on computer vision and pattern recognition (CVPR), pp 334–341Google Scholar
  20. 20.
    Haralick RM, Shapiro LG (2010) Computer and robot vision. Addison-Wesley Longman Publishing Co., Inc, BostonGoogle Scholar
  21. 21.
    Gaidhane VH, Hote YV, Singh V (2017) An efficient similarity measure approach for PCB surface defect detection. Pattern Anal Appl 21(1):277–289MathSciNetCrossRefGoogle Scholar
  22. 22.
    Computed Tomography Emphysema Database. Accessible online. Accessed 01 Oct 2016
  23. 23.
    Sørensen L, Shaker SB, de Bruijne M (2008) Texture classification in lung CT using local binary patterns. In: 11th International Conference, New York, NY, USA, Sept 6–10Google Scholar
  24. 24.
    Prasad M, Sowmya A, Wilson P (2009) Multi-level classification of emphysema in HRCT lung images. Pattern Anal Appl 12(1):9–20MathSciNetCrossRefGoogle Scholar
  25. 25.
    He Y, Sang N, Gao C (2013) Multi-structure local binary patterns for texture classification. Pattern Anal Appl 16(4):595–607MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nava R, Boris ER, Cristobal G, Estepar RSJ (2014) Extended Gabor approach applied to classification of emphysematous patterns in computed tomography. Med Biol Eng Comput 52(4):393–403CrossRefGoogle Scholar
  27. 27.
    Esser SK, Appuswamy R, Merolla P, Arthur JV, Modha DS (2015) Backpropagation for energy -efficient neuromorphic computing. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in information processing systems, vol 28. Curran Associates, Inc., pp 1117–1125Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics Engineering, Birla Institute of Technology and Sciences PilaniDubai International Academic CityDubaiUAE

Personalised recommendations