Pattern Analysis and Applications

, Volume 18, Issue 1, pp 135–143 | Cite as

Optical flow-based observation models for particle filter tracking

  • Manuel LucenaEmail author
  • Jose Manuel Fuertes
  • Nicolas Perez de la Blanca
Short Paper


This paper presents three observation models suitable for particle filter tracking, based on the optical flow of the sequence. Modern optical flow computation techniques can obtain in real time very accurate estimates, so we can use it as a source of evidence for higher level image processing. Our image motion-based models are based, respectively, on: a previously computed optical flow field, the image brightness constraint, and similarity measures. They take into account not only the consistency of the measured optical flow with the motion predicted by the model, but also the presence of optical flow discontinuities on the object boundary. Experimental results show that the resulting trackers are comparable to other, state-of-the-art tracking methods. While the model based on similarity measures provides better performance, the optical flow-field-based model is a suitable option when the flow field is available.


Object Tracking Optical Flow Particle Filter 


  1. 1.
    Amiaz T, Kiryati N (2006) Piecewise-smooth dense optical flow via level sets. Int J Comput Vis 68(2):111–124CrossRefGoogle Scholar
  2. 2.
    Avidan S (2004) Support vector tracking. IEEE Trans Pattern Anal Mach Intell 26(8):1064–1072CrossRefGoogle Scholar
  3. 3.
    Babenko B, Yang MH, Belongie S (2011) Visual tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell (PAMI)Google Scholar
  4. 4.
    Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. Int J Comput Vis 12(1):43–77CrossRefGoogle Scholar
  5. 5.
    Bertalmio M, Sapiro G, Randall G (2000) Morphing active contours. IEEE Trans Pattern Anal Mach Intell 22:733–737CrossRefGoogle Scholar
  6. 6.
    Blake A, Isard M (1998) Active contours. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: Proceedings of the 8th European conference on computer vision, Lecture notes in computer science, vol. 3024. Springer, Berlin, pp. 25–36Google Scholar
  8. 8.
    Bruhn A, Weickert J (2005) C. Schnörr: Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. Int J Comput Vis 61(3):211–231CrossRefGoogle Scholar
  9. 9.
    Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577CrossRefGoogle Scholar
  10. 10.
    Cremers D, Schnrr C (2003) Statistical shape knowledge in variational motion segmentation. Image Vis Comput 21:77–86CrossRefGoogle Scholar
  11. 11.
    Deutscher J, Blake A, North B, Bascle B (1999) Tracking through singularities and discontinuities by random sampling. In: Proceedings of international conference on computer vision, vol. 2, pp 1144–1149Google Scholar
  12. 12.
    Gelfand A, Smith A (1990) Sampling-based approaches to computing marginal densities. J Am Stat Assoc 85(410):398–409CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Gwosdek P, Bruhn A, Weickert J (2010) Variational optic flow on the sony playstation 3. J Real-Time Image Process 5:163–177CrossRefGoogle Scholar
  14. 14.
    Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17(1–3):185–203CrossRefGoogle Scholar
  15. 15.
    Kalman R (1960) A new approach to linear filtering and prediction problems. Trans ASME-J Basic Eng 82(Series D):35–45Google Scholar
  16. 16.
    Kwon J, Lee KM (2010) Visual tracking decomposition. In: CVPR, pp. 1269–1276Google Scholar
  17. 17.
    Lee D, Choi S (2011) Multisensor fusion-based object detection and tracking using active shape model. In: International conference on digital information management, pp 108–114Google Scholar
  18. 18.
    Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proceedings of DARPA IU Workshop, pp 121–130Google Scholar
  19. 19.
    Lucena M, Fuertes J, dela Blanca N, Garrido A (2003) An optical flow probabilistic observation model for tracking. In: Proceedings. 2003 International Conference on Image processing, ICIP 2003, vol. 3, pp. III - 957–60 vol. 2Google Scholar
  20. 20.
    Lucena M, Fuertes JM, laBlanca NP (2004) Evaluation of three optical flow-based observation models for tracking. Int Conf Pattern Recognit 4:236–239Google Scholar
  21. 21.
    Mansouri A (2002) Region tracking via level set pdes without motion computation. IEEE Trans Pattern Anal Mach Intell 24:947–961CrossRefGoogle Scholar
  22. 22.
    McCane B, Novins K, Crannitch D, Galvin B (2001) On benchmarking optical flow. Comput Vis Image Underst 84:126–143CrossRefzbMATHGoogle Scholar
  23. 23.
    Nir T, Bruckstein AM, Kimmel R (2008) Over-parameterized variational optical flow. Int J Comput Vis 76(2):205–216CrossRefGoogle Scholar
  24. 24.
    Proesmans M, VanGool L, Pauwels E, Oosterlinck A (1994) Determination of optical flow and its discontinuities using non-linear diffusion. In: Proceedings of 3rd European conference on computer vision, vol. 2, pp 295–304Google Scholar
  25. 25.
    Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141CrossRefGoogle Scholar
  26. 26.
    Sullivan J, Blake A, Isard M, MacCormick J (2001) Bayesian object localisation in images. Int J Comput Vis 44(2):111–135CrossRefzbMATHGoogle Scholar
  27. 27.
    Watcher S, Nagel HH (1999) Tracking of persons in monocular image sequences. Comput Vis Image Underst 74(3):174–192CrossRefGoogle Scholar
  28. 28.
    Wu Y, Cheng J, Wang J, Lu H, Wang J, Ling H, Blasch E, Bai L (2012) Real-time probabilistic covariance tracking with efficient model update. IEEE Trans Image Process 21(5):2824–2837CrossRefMathSciNetGoogle Scholar
  29. 29.
    Yang H, Shao L, Zheng F, Wang L, Song Z (2011) Recent advances and trends in visual tracking: a review. Neurocomput. 74(18):3823–3831CrossRefGoogle Scholar
  30. 30.
    Yilmaz A, Javed O, Shah M (2006) Object tracking: s survey. ACM Comput Surv 38(4):13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Manuel Lucena
    • 1
    Email author
  • Jose Manuel Fuertes
    • 1
  • Nicolas Perez de la Blanca
    • 2
  1. 1.Department of Computer Science, Escuela Politecnica SuperiorUniversity of JaenJaénSpain
  2. 2.Department of Computer Science and A.IUniversity of GranadaGranadaSpain

Personalised recommendations