Advertisement

Pattern Analysis and Applications

, Volume 18, Issue 3, pp 677–694 | Cite as

Automatic grading system for human tear films

  • Beatriz Remeseiro
  • Katherine M. Oliver
  • Alan Tomlinson
  • Eilidh Martin
  • Noelia Barreira
  • Antonio Mosquera
Industrial and Commercial Application

Abstract

Dry eye syndrome is a prevalent disease which affects a wide range of the population and has a negative impact on their daily activities, such as driving or working with computers. Its diagnosis and monitoring require a battery of tests which measure different physiological characteristics. One of these clinical tests consists in capturing the appearance of the tear film using the Doane interferometer. Once acquired, the interferometry images are classified into one of the five categories considered in this research. The variability in appearance makes the use of a computer-based analysis system highly desirable. For this reason, a general methodology for the automatic analysis and categorization of interferometry images is proposed. The development of this methodology included a deep study based on several techniques for image texture analysis, three color spaces and different machine learning algorithms. The adequacy of this methodology was demonstrated, achieving classification rates over 93 %. Also, it provides unbiased results and allows important time savings for experts.

Keywords

Texture analysis Pattern recognition Machine learning Dry eye syndrome Tear film Doane interferometer 

Notes

Acknowledgments

This research has been partially funded by the Secretaría de Estado de Investigación of the Spanish Government and FEDER funds of the European Union through the research projects TIN2011-25476 and PI12/02075; and by the Consellería de Cultura, Educación e Ordenación Universitaria of the Xunta de Galicia through the agreement for the Singular Research Center CITIC.

References

  1. 1.
    Moss SE (2000) Prevalence of and risk factors for dry eye syndrome. Archiv Ophthalmol 118(9):1264–1268CrossRefGoogle Scholar
  2. 2.
    Jie Y, Xu L, Wu YY, Jonas JB (2008) Prevalence of dry eye among adult Chinese in the Beijing Eye Study. Eye 23(3):688–693CrossRefGoogle Scholar
  3. 3.
    Smith JA (2007) The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop. Ocular Surf 5(2):93–107CrossRefGoogle Scholar
  4. 4.
    Nichols KK, Nichols JJ, Zadnik K (2000) Frequency of dry eye diagnostic test procedures used in various modes of ophthalmic practice. Cornea 19(4):477–482CrossRefGoogle Scholar
  5. 5.
    Bron AJ (2001) Diagnosis of dry eye. Surv Ophthalmol 45(2).Google Scholar
  6. 6.
    Bron AJ, Smith JA, Calonge M (2007) Methodologies to diagnose and monitor dry eye disease: report of the Diagnostic Methodology Subcommittee of the International Dry Eye WorkShop. Ocular Surf 5(2):108–152CrossRefGoogle Scholar
  7. 7.
    Lemp MA (2007) The definition and classification of dry eye disease: report of the definition and classification Subcommittee of the International Dry Eye WorkShop. Ocular Surf 5(2):75–92CrossRefGoogle Scholar
  8. 8.
    Nichols KK, Mitchell GL, Zadnik KT (2004) The repeatability of clinical measurements of dry eye. Cornea 23(3):272–285CrossRefGoogle Scholar
  9. 9.
    Rolando M, Zierhut M (2001) The ocular surface and tear film and their dysfunction in dry eye disease. Surv Ophthalmol 45(Supplement 2(0)):S203–S210Google Scholar
  10. 10.
    Korb D, Craig J, Doughty M, Guillon J, Smith G, Tomlinson A (2002) The tear film structure, function and clinical examination, Chap. 2. Butterworth Heinemann, UKGoogle Scholar
  11. 11.
    Doane MG (1989) An instrument for in vivo tear film interferometry. Optometry Vis Sci 66(6):383–388CrossRefGoogle Scholar
  12. 12.
    Guillon JP, Guillon M (1997) Tearscope plus clinical hand book and tearscope plus instructions. Keeler Ltd., Keeler Inc, Windsor, BroomallGoogle Scholar
  13. 13.
    Thai LC, Tomlinson A, Doane MG (2004) Effect of contact lens materials on tear physiology. Optometry Vis Sci 81(3):194–204CrossRefGoogle Scholar
  14. 14.
    Bron AJ, Tiffany JM, Gouveia SM, Yokoi N, Voon LW (2004) Functional aspects of the tear film lipid layer. Exp Eye Res 78:347–360CrossRefGoogle Scholar
  15. 15.
    Freeman MH, Hull CC (2014) Interference and optical filmsGoogle Scholar
  16. 16.
    McCann LC, Tomlinson A, Pearce EI, Papa V (2012) Effectiveness of artificial tears in the management of evaporative dry eye. Cornea 31(1):1–5CrossRefGoogle Scholar
  17. 17.
    Fagehi RA, Tomlinson A, Manihilov V (2012) Comparative study of soft contact lenswetting in vitro after storage in Biotrue MPS. Contact Lens Anterior Eye 35(1)Google Scholar
  18. 18.
    CMEX-1300x camera. Euromex Microscopen BV. Arnhem, The NetherlandsGoogle Scholar
  19. 19.
    ImageFocus Capture and Analysis software, Euromex Microscopen BV, Arnhem, The NetherlandsGoogle Scholar
  20. 20.
    ImageToAvi software, ASW Software, Mesa, AZ, US.Google Scholar
  21. 21.
    Gonzalez R, Woods R (2008) Digital image processing. Pearson, Prentice HallGoogle Scholar
  22. 22.
    Remeseiro B, Penas M, Barreira N, Mosquera A, Novo J, García-Resúa C (2013) Automatic classification of the interferential tear film lipid layer using colour texture analysis. Comput Methods Progr Biomed 111:93–102CrossRefGoogle Scholar
  23. 23.
    McLaren K (1976) The development of the CIE 1976 (L*a*b*) uniform colour-space and colour-difference formula. J Soc Dyers Colourists 92(9):338–341CrossRefGoogle Scholar
  24. 24.
    Sangwine SJ, Horne REN (1998) The colour image processing handbook. Chapman & Hall, LondonGoogle Scholar
  25. 25.
    Hering E (1964) Outlines of a theory of the light sense. Harvard University Press, CambridgeGoogle Scholar
  26. 26.
    Borer S, Ssstrunk S (2002) Opponent color space motivated by retinal processing. In: Proc. IS&T first European conference on color in graphics, imaging and vision (CGIV), vol 1, pp 187–189Google Scholar
  27. 27.
    Ramos L, Penas M, Remeseiro B, Mosquera A, Barreira N, Yebra-Pimentel E (2011) Texture and color analysis for the automatic classification of the eye lipid layer. LNCS: advances in computational intelligence (international work conference on artificial neural networks-IWANN 2011) 6692:66–73Google Scholar
  28. 28.
    Gabor D (1946) Theory of communication. J Inst Electr Eng 93:429–457Google Scholar
  29. 29.
    Grigorescu SE, Petkov N, Kruizinga P (2002) Comparison of texture features based on Gabor filters. IEEE Trans Image Process 11(10):1160–1167MathSciNetCrossRefGoogle Scholar
  30. 30.
    Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693CrossRefzbMATHGoogle Scholar
  31. 31.
    Fdez-Sarria A, Ruiz LA, Recio JA (2005) Study of methods based on wavelets for texture classification of high resolution images. In: Procs of 25th EARSeL symposium. Global developments in environmental earth observation from space, pp 19–25Google Scholar
  32. 32.
    Remeseiro B, Ramos L, Penas M, Martínez E, Penedo MG, Mosquera A (2011) Colour texture analysis for classifying the tear film lipid layer: a comparative study. In: International conference on digital image computing: techniques and applications (DICTA), pp 268–273, Noosa, AustraliaGoogle Scholar
  33. 33.
    Daubechies I (1992) Ten lectures on wavelets. SIAM, CBMS seriesGoogle Scholar
  34. 34.
    Woods JW (1972) Two-dimensional discrete markovian fields. IEEE Trans Inf Theory 18(2):232–240CrossRefzbMATHGoogle Scholar
  35. 35.
    Çesmeli E, Wang D (2001) Texture segmentation using Gaussian–Markov random fields and neural oscillator networks. IEEE Trans Neural Netw 12Google Scholar
  36. 36.
    Haralick RM, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Trans Syst Man Cybern Syst Man Cybern 3:610–621Google Scholar
  37. 37.
    Mitchell TM (1997) Machine learning. McGraw-Hill, New YorkGoogle Scholar
  38. 38.
    Remeseiro B, Penas M, Mosquera A, Novo J, Penedo MG, Yebra-Pimentel E (2012) Statistical comparison of classifiers applied to the interferential tear film lipid layer automatic classification. Comput Math Methods Med 1–10:2012Google Scholar
  39. 39.
    Jensen F (1996) An introduction to bayesian networks. Springer, BerlinGoogle Scholar
  40. 40.
    Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Machine Learn 29:131–163.Google Scholar
  41. 41.
    Biau G (2012) Analysis of a random forests model. J Machine Learn Res 13:1063–1095MathSciNetzbMATHGoogle Scholar
  42. 42.
    Breiman L (2001) Random Forests. Machine Learning 45(1):5–32CrossRefzbMATHGoogle Scholar
  43. 43.
    Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Mining Knowl Discov 2:121–167CrossRefGoogle Scholar
  44. 44.
    VOPTICAL_GCU, VARPA optical dataset annotated by optometrists from the Department of Life Sciences, Glasgow Caledonian University (UK), 2012. http://www.varpa.es/voptical_gcu.html. Accessed July 2014
  45. 45.
    Chang C, Lin C (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27Google Scholar
  46. 46.
    Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. ACM SIGKDD Explor Newslett 11(1):10–18CrossRefGoogle Scholar
  47. 47.
    Rodriguez J, Perez A, Lozano J (2010) Sensitivity analysis of k-fold cross-validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell 32:569–575CrossRefGoogle Scholar
  48. 48.
    Goulden CH (1956) Methods of statistical analysis, 2nd edn. Wiley, Chapman & Hall, New YorkGoogle Scholar
  49. 49.
    Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1(6):80–83CrossRefGoogle Scholar
  50. 50.
    Hogg R, Ledolter J (1987) Engineering Statistics. MacMillan, New YorkGoogle Scholar
  51. 51.
    Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetzbMATHGoogle Scholar
  52. 52.
    Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701CrossRefGoogle Scholar
  53. 53.
    Nemenyi PB (1963) Distribution-free multiple comparisons. PhD thesis, Princeton UniversityGoogle Scholar
  54. 54.
    Fawcett T (2006) An Introduction to ROC Analysis. Pattern Recognit Lett 27(8):861–874MathSciNetCrossRefGoogle Scholar
  55. 55.
    Efron N (1997) Clinical application of grading scales for contact lens complications. Optician 213:26–34Google Scholar
  56. 56.
    Efron N, Morgan PB, Katsara SS (2001) Validation of grading scales for contact lens complications. Ophthal Physiol Optics 21(1):17–29Google Scholar
  57. 57.
    Efron N (2011) A survey of the use of grading scales for contact lens complications in optometric practice. Clin Exper Optometry 94(2):193–199MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Beatriz Remeseiro
    • 1
  • Katherine M. Oliver
    • 2
  • Alan Tomlinson
    • 2
  • Eilidh Martin
    • 2
  • Noelia Barreira
    • 1
  • Antonio Mosquera
    • 3
  1. 1.Departamento de ComputaciónUniversidade da CoruñaA CoruñaSpain
  2. 2.Department of Life SciencesGlasgow Caledonian UniversityGlasgowUK
  3. 3.Departamento de Electrónica y ComputaciónUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations