Pattern Analysis and Applications

, Volume 17, Issue 2, pp 401–414 | Cite as

Bayesian classification and unsupervised learning for isolating weeds in row crops

  • François-Michel De Rainville
  • Audrey Durand
  • Félix-Antoine Fortin
  • Kevin Tanguy
  • Xavier Maldague
  • Bernard Panneton
  • Marie-Josée Simard
Industrial and Commercial Application


This paper presents a weed/crop classification method using computer vision and morphological analysis. Subsequent supervised and unsupervised learning methods are applied to extract dominant morphological characteristics of weeds present in corn and soybean fields. The novelty of the presented technique resides in the feature extraction process that is based on spatial localization of vegetation in fields. Features from the weed leaf area distribution are extracted from the cultivation inter-rows, then features from the crop are inferred from the mixture model equation. Those extracted features are then passed to a naive bayesian classifier and a gaussian mixture clustering algorithm to discriminate weed from crop plant. The presented technique correctly classifies an average of 94 % of corn and soybean plants and 85 % of the weed (multiple species) without any prior knowledge on the species present in the field.


Bayesian classification Machine learning Weed detection Computer vision Plant morphology Corn and soybean fields 



The authors wish to thank B. Panneton and M.-J. Simard from Agriculture and Agri-Food Canada for their contributions and insights on the material presented in the current paper, L. Longchamps for his time labelling the test images and Prof. C. Gagné for his feedback and comments on the paper.


  1. 1.
    Aitkenhead M.J., Dalgetty I.A., Mullins C.E., McDonald A.J.S., Strachan N.J.C. (2003) Weed and crop discrimination using image analysis and artificial intelligence methods. Computers and Electronics in Agriculture 39(3):157–171CrossRefGoogle Scholar
  2. 2.
    Alpaydin E (2010) Introduction to machine learning, 2nd edn. MIT Press, USAGoogle Scholar
  3. 3.
    Asif M, Amir S, Israr A, Faraz M (2010) A vision system for autonomous weed detection robot. Int J Comput Electr Eng 2(3):486–491Google Scholar
  4. 4.
    Bowman A, Azzalini A (1997) Applied smoothing techniques for data analysis. Clarendon Press, OxfordGoogle Scholar
  5. 5.
    DeLorenzo M.E., Scott G.I., Ross P.E. (2001) Toxicity of pesticides to aquatic microorganisms: a review. Environmental Toxicology and Chemistry 20(1):84–98CrossRefGoogle Scholar
  6. 6.
    Dempster A.P., Laird N.M., Rubin D.B. (1977) Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B (Methodological) 39:1–38zbMATHMathSciNetGoogle Scholar
  7. 7.
    Figueiredo M.A.T., Jain A.K. (2002) Unsupervised learning of finite mixture models. IEEE Transaction on Pattern Analysis and Machine Intelligence 24(3):381–396CrossRefGoogle Scholar
  8. 8.
    Freemark K., Boutin C. (1995) Impacts of agricultural herbicide use on terrestrial wildlife in temperate landscapes: A review with special reference to north america. Agriculture, Ecosystems & Environment 52(2):67–91CrossRefGoogle Scholar
  9. 9.
    Hemming J., Rath T. (2001) Precision Agriculture Computer-Vision-based Weed Identification under Field Conditions using Controlled Lighting. Journal of Agricultural Engineering Research 78(3):233–243CrossRefGoogle Scholar
  10. 10.
    Hough P.V.C. (1962) A Method and Means for Recognizing Complex Patterns. U.S. Patent 3,069,654Google Scholar
  11. 11.
    Jones G., Gée C., Truchetet F. (2009) Assessment of an inter-row weed infestation rate on simulated agronomic images. Computers and Electronics in Agriculture 67(1-2):43–50CrossRefGoogle Scholar
  12. 12.
    Longchamps L., Panneton B., Samson G., Leroux G., Thériault R. (2010) Discrimination of corn, grasses and dicot weeds by their uv-induced fluorescence spectral signature. Precision Agric 11:181–197CrossRefGoogle Scholar
  13. 13.
    Ngouajio M., Lemieux C., Fortier J.J., Careau D., Leroux G.D. (1998) Validation of an operator-assisted module to measure weed and crop leaf cover by digital image analysis. Weed Technol 12(3):446–453Google Scholar
  14. 14.
    Otsu N. (1979) A threshold selection method from gray-level histograms. IEEE Transaction on Systems, Man, and Cybernetics 9(1):62–66CrossRefMathSciNetGoogle Scholar
  15. 15.
    Panneton B (2009) Initiative des stratégies de réduction des risques liés aux pesticides. Rapport annuel PRR07–10, Centre pour la lutte antiparasitaire-Agriculture et Agroalimentaire CanadaGoogle Scholar
  16. 16.
    Panneton B., Brouillard M. (2009) Colour representation methods for segmentation of vegetation in photographs. Biosyst Eng 102:365–378CrossRefGoogle Scholar
  17. 17.
    Panneton B. Simard MJ, Leroux GD, Légére A (2010) Mise au point et impact sur la distribution spatio-temporelle des adventices d’un système d’aide ála décision pour l’application des herbicides en maïs-soya. Rapport final PRR07–10, Centre pour la lutte antiparasitaire-Agriculture et Agroalimentaire CanadaGoogle Scholar
  18. 18.
    Parzen E. (1962) On estimation of a probability density function and mode. Annals of Mathematical Statistics 33:1065–1076CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Rosenblatt M. (1956) Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics 27:832–837CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Slaughter D.C., Giles D.K., Downey D. (2008) Autonomous robotic weed control systems: A review.Computers and Electronics in Agriculture 61(1):63–78 doi: 10.1016/j.compag.2007.05.008 CrossRefGoogle Scholar
  21. 21.
    Stafford J.V. (2000) Implementing precision agriculture in the 21th century. J Agric Eng Res 76:267–275CrossRefGoogle Scholar
  22. 22.
    Tellaeche A., Pajares G., Burgos-Artizzu X.P., Ribeiro A. (2011) A computer vision approach for weeds identification through Support Vector Machines. Applied Soft Computing 11(1):908–915CrossRefGoogle Scholar
  23. 23.
    Timmermann C., Gerhards R., Kuhbauch W. (2003) The economic impact of site-specific weed control. Precision Agric 4(3):249–260CrossRefGoogle Scholar
  24. 24.
    Yang C.C., Prasher S.O., Landry J.A., Ramaswamy H.S. (2003) Development of an image processing system and a fuzzy algorithm for site-specific herbicide applications. Precision Agric 4(1):5–18CrossRefGoogle Scholar
  25. 25.
    Åstrand B., Baerveldt A.J. (2005) A vision based row-following system for agricultural field machinery. Mechatronics 15(2):251–269CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • François-Michel De Rainville
    • 1
  • Audrey Durand
    • 1
  • Félix-Antoine Fortin
    • 1
  • Kevin Tanguy
    • 1
  • Xavier Maldague
    • 1
  • Bernard Panneton
    • 2
  • Marie-Josée Simard
    • 3
  1. 1.Laboratoire de vision et systèmes numériques, Département de génie électrique et de génie informatiqueUniversité LavalQuebecCanada
  2. 2.Centre de recherche et de développement en horticultureAgriculture et Agroalimentaire CanadaSt-Jean-sur-RichelieuCanada
  3. 3.Centre de recherche et de développement sur les sols et les grandes culturesAgriculture et Agroalimentaire CanadaQuebecCanada

Personalised recommendations