Advertisement

Pattern Analysis and Applications

, Volume 16, Issue 4, pp 581–594 | Cite as

Unsupervised colour image segmentation by low-level perceptual grouping

  • Adolfo Martínez-Usó
  • Filiberto Pla
  • Pedro García-Sevilla
Theoretical Advances

Abstract

This paper proposes a new unsupervised approach for colour image segmentation. A hierarchy of image partitions is created on the basis of a function that merges spatially connected regions according to primary perceptual criteria. Likewise, a global function that measures the goodness of each defined partition is used to choose the best low-level perceptual grouping in the hierarchy. Contributions also include a comparative study with five unsupervised colour image segmentation techniques. These techniques have been frequently used as a reference in other comparisons. The results obtained by each method have been systematically evaluated using four well-known unsupervised measures for judging the segmentation quality. Our methodology has globally shown the best performance, obtaining better results in three out of four of these segmentation quality measures. Experiments will also show that our proposal finds low-level perceptual solutions that are highly correlated with the ones provided by humans.

Keywords

Colour image segmentation Low-level perception Unsupervised segmentation 

Notes

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation under the projects Consolider Ingenio 2010 CSD2007-00018, AYA2008-05965-C04-04/ESP and by Caixa-Castelló foundation under the project P1 1B2007-48. We would like to deeply thank Dr. Jason Fritts and Dr. Hui Zhang for their help towards implementing the unsupervised measures for evaluating the segmentation quality. We would also thank to Dr. Richard Nock, Dr. Sreenath Rao Vantaram and Dr. Pablo Arbelaez for their help detailing the SRM and GSEG algorithms and the Berkeley segmentation database respectively.

References

  1. 1.
    Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recognit 26(9):1277–1294CrossRefGoogle Scholar
  2. 2.
    Zucker S (1976) Region growing: childhood and adolescence. CGIP 5:382–399Google Scholar
  3. 3.
    Fu K, Mui J (1981) A survey on image segmentation. Pattern Recognit 13:3–16MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lucchese L, Mitra S (1999) Advances in color image segmentation. GLOBECOM 4:2038–2044Google Scholar
  5. 5.
    Haralick RH, Shapiro LG (1985) Image segmentation techniques. CVGIP 29:100–132Google Scholar
  6. 6.
    Cheng H-D, Jiang XH, Sun Y, Wang J (2001) Color image segmentation: advances and prospects. Pattern Recognit 34(12):2259–2281CrossRefMATHGoogle Scholar
  7. 7.
    Sahoo PK, Soltani S, Wong AK, Chen YC (1988) A survey of thresholding techniques. Comput Vis Graph Image Process 41(2):233–260CrossRefGoogle Scholar
  8. 8.
    Tabb M, Ahuja N (1997) Multiscale image segmentation by integrated edge and region detection. IEEE Trans Image Process 6(5):642–655CrossRefGoogle Scholar
  9. 9.
    Todorovic S, Ahuja N (2008) Unsupervised category modeling, recognition and segmentation in images. IEEE Trans PAMI 30(12):2158–2174CrossRefGoogle Scholar
  10. 10.
    Beveridge J, Griffith JS, Kohler RR, Hanson A, Riseman E (1989) Segmenting images using localized histograms and region merging. Int J Comput Vis 2(3):311–352CrossRefGoogle Scholar
  11. 11.
    Rubner Y, Puzicha J, Tomasi C, Buhmann JM (2001) Empirical evaluation of dissimilarity measures for color and texture. CVIU 84(1):25–43MATHGoogle Scholar
  12. 12.
    Todorovic S, Ahuja N (2006) Extracting subimages of an unknown category from a set of images. CVPR 927–934Google Scholar
  13. 13.
    Tremeau A, Borel N (1997) A region growing and merging algorithm to color segmentation. Pattern Recognit 30(7):1191–1203CrossRefGoogle Scholar
  14. 14.
    Pauwels EJ, Frederix G (1999) Finding salient regions in images: non-parametric clustering for image segmentation and grouping. CVIU 75(1/2):73–85Google Scholar
  15. 15.
    Randall J, Guan L, Li W, Zhang X (2008) The HCM for perceptual image segmentation. Neurocomputing 71(10–12):1966–1979CrossRefGoogle Scholar
  16. 16.
    Haxhimusa Y, Kropatsch WG (2004) Segmentation graph hierarchies. In: Proceedings of the SSPR-SPR, pp 343–351Google Scholar
  17. 17.
    Mirmehdi M, Petrou M (2000) Segmentation of color textures. IEEE Trans PAMI 22(2):142–159CrossRefGoogle Scholar
  18. 18.
    Chen J, Pappas TN, Mojsilović A, Rogowitz BE (2005) Adaptive perceptual color-texture image segmentation. IEEE Trans Image Process 14(10):1524–1536CrossRefGoogle Scholar
  19. 19.
    Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans PAMI 22(8):888–905CrossRefGoogle Scholar
  20. 20.
    Gdalyahu Y, Weinshall D, Werman M (2001) Self-organization in vision: stochastic clustering for image segmentation, perceptual grouping, and image database organization. IEEE Trans PAMI 23:10531074.Google Scholar
  21. 21.
    Paschos G (2001) Perceptually uniform color spaces for color texture analysis: an empirical evaluation. IEEE Trans Image Process 10(6):932–937CrossRefMATHGoogle Scholar
  22. 22.
    Alata O, Quintard L (2009) Is there a best color space for color image characterization or representation based on Multivariate Gaussian Mixture Model? Comput Vis Image Underst 113 (8):867–877CrossRefGoogle Scholar
  23. 23.
    Zhang H, Goldman SA (2006) Perceptual information of images and the bias in homogeneity-based segmentation. In: Proceedings of the CVPR, pp 181–188Google Scholar
  24. 24.
    Palmer S, Rock I (1994) Rethinking perceptual organization: the role of uniform connectedness. Psychonom Bull Rev 1(1):29–55Google Scholar
  25. 25.
    Zhang YJ (1996) A survey on evaluation methods for image segmentation. Pattern Recognit 29(8):1335–1346CrossRefGoogle Scholar
  26. 26.
    Cardoso JS, Corte-Real L (2005) Toward a generic evaluation of image segmentation. IEEE Trans Image Process 14(11):1773–1782CrossRefGoogle Scholar
  27. 27.
    Chabrier S, Emile B, Laurent H, Rosenberger C, Marché P (2004) Unsupervised evaluation of image segmentation application to multi-spectral images. ICPR 1:576–579Google Scholar
  28. 28.
    Zhang H, Fritts JE, Goldman SA (2008) Image segmentation evaluation: a survey of unsupervised methods. Comput Vis Image Underst 110(2):260–280CrossRefGoogle Scholar
  29. 29.
    Deng Y, Kenney C, Moore MS, Manjunath BS (1999) Peer group filtering and perceptual color image quantization. In: Proceedings of the IEEE ISCS, vol 4, pp 21–24Google Scholar
  30. 30.
    Schettini R (1993) A segmentation algorithm for color images. Pattern Recognit Lett 14(6):499–506CrossRefGoogle Scholar
  31. 31.
    Weiss Y, Adelson EH (1996) A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models. CVPR 321–326Google Scholar
  32. 32.
    Mansouri A-R, Mitiche A, Vázquez C (2006) Multiregion competition: a level set extension of region competition to multiple region image partitioning. Comput Vis Image Underst 101(3):137–150CrossRefGoogle Scholar
  33. 33.
    Mohand SA, Nizar B, Djemel Z (2008) Finite general Gaussian mixture modeling and application to image and video foreground segmentation. J Electr Imag 17(1):013005.Google Scholar
  34. 34.
    Mohand SA, Djemel Z, Nizar B, Sabri B (2010) Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection. IEEE Trans Circuit Syst Video Technol 20(10):1373–1377Google Scholar
  35. 35.
    Comaniciu D, Meer P (1997) Robust analysis of feature spaces: color image segmentation. In: IEEE conference computer vision and pattern recognition, pp 750–755Google Scholar
  36. 36.
    Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181Google Scholar
  37. 37.
    Nock R, Nielsen F (2004) Statistical region merging. IEEE Trans PAMI 26(11):1452–1458CrossRefGoogle Scholar
  38. 38.
    Deng Y, Manjunath B (2001) Unsupervised segmentation of color-texture regions in images and video. IEEE Trans PAMI 23 (8):800–810CrossRefGoogle Scholar
  39. 39.
    Ugarriza LG, Saber E, Vantaram SR, Amuso V, Shaw M, Bhaskar R (2009) Automatic image segmentation by dynamic region growth and multiresolution merging. IEEE Trans Image Process 18(10):2275–2288MathSciNetCrossRefGoogle Scholar
  40. 40.
    Martinez-Uso A, Pla F, Garcia-Sevilla P (2006) Unsupervised image segmentation using a hierarchical clustering selection process. LNCS (4109):799–807Google Scholar
  41. 41.
    Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans PAMI 29(6):929–944CrossRefGoogle Scholar
  42. 42.
    Zhang H, Fritts JE, Goldman SA (2004) An entropy-based objective evaluation method for image segmentation. In: Proceedings of the SPIE, pp 38–49Google Scholar
  43. 43.
    Chen H-C, Wang S-J (2004) The use of visible color difference in the quantitative evaluation of color image segmentation. IEEE ICASSP 3:593–596Google Scholar
  44. 44.
    Zeboudj R (1998) Filtrage, seuillage automatique, contraste et contours: du pré-traitement à l’analyse d’image. Ph. D. thesis, University of Saint Etienne, FranceGoogle Scholar
  45. 45.
    Rosenberger C, Chehdi K (2000) Genetic fusion: application to multi-components image segmentation. In: IEEE ICASSP, pp 2223–2226.Google Scholar
  46. 46.
    Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th ICCV, vol 2, pp 416–423Google Scholar
  47. 47.
    Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Am Stat Assoc 32(200):675–701CrossRefGoogle Scholar
  48. 48.
    Jiang X, Marti C, Irniger C, Bunke H (2006) Distance measures for image segmentation evaluation. EURASIP J Appl Signal Process 2006:1–10Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Adolfo Martínez-Usó
    • 1
  • Filiberto Pla
    • 1
  • Pedro García-Sevilla
    • 1
  1. 1.Department of Computer Languages and Systems, Institute of New Imaging TechnologiesUniversitat Jaume ICastellónSpain

Personalised recommendations