Advertisement

Pattern Analysis and Applications

, Volume 16, Issue 2, pp 141–161 | Cite as

Parametric and nonparametric tests for speckled imagery

  • Renato J. Cintra
  • Alejandro C. Frery
  • Abraão D. C. Nascimento
Theoretical Advances

Abstract

Synthetic aperture radar (SAR) has a pivotal role as a remote imaging method. Obtained by means of coherent illumination, SAR images are contaminated with speckle noise. The statistical modeling of such contamination is well described according to the multiplicative model and its implied \(\fancyscript{G}^0\) distribution. The understanding of SAR imagery and scene element identification is an important objective in the field. In particular, reliable image contrast tools are sought. Aiming the proposition of new tools for evaluating SAR image contrast, we investigated new methods based on stochastic divergence. We propose several divergence measures specifically tailored for \(\fancyscript{G}^0\) distributed data. We also introduce a nonparametric approach based on the Kolmogorov–Smirnov distance for \(\fancyscript{G}^0\) data. We devised and assessed tests based on such measures, and their performances were quantified according to their test sizes and powers. Using Monte Carlo simulation, we present a robustness analysis of test statistics and of maximum likelihood estimators for several degrees of innovative contamination. It was identified that the proposed tests based on triangular and arithmetic-geometric measures outperformed the Kolmogorov–Smirnov methodology.

Keywords

Robust statistics Information theory Nonparametric methods Parametric inference 

Notes

Acknowledgments

Authors are grateful to CNPq and FACEPE for funding this research.

References

  1. 1.
    Allende H, Frery AC, Galbiati J, Pizarro L (2006) M-estimators with asymmetric influence functions: the GA0 distribution case. J Stat Comput Simul 76(11):941–956MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Andai A (2009) On the geometry of generalized Gaussian distributions. J Multivar Anal 100(4):777–793MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Anfinsen SN, Doulgeris AP, Eltoft T (2009) Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery. IEEE Trans Geosci Remote Sens 47(11): 3795–3809CrossRefGoogle Scholar
  4. 4.
    Blacknell D, Blake AP, Oliver CJ (1995) High resolution SAR clutter texture analysis and simulation. In: SPIE conference synthetic aperture radar and passive microwave sensing, vol 2584. Paris, France, pp 101–108Google Scholar
  5. 5.
    Bustos OH, Lucini MM, Frery AC (2002) M-estimators of roughness and scale for GA0-modelled SAR imagery. EURASIP J Appl Signal Process 2002(1): 105–114zbMATHCrossRefGoogle Scholar
  6. 6.
    Cribari-Neto F, Frery AC, Silva MF (2002) Improved estimation of clutter properties in speckled imagery. Comput Stat Data Anal 40(4):801–824MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cribari-Neto F, Zarkos SG (1999) R: yet another econometric programming environment. J Appl Econom 14:319–329CrossRefGoogle Scholar
  8. 8.
    Daba JS, Bell MR (1994) Statistical distributions of partially developed speckle based on a small number of constant scatterers with random phase. In: Geoscience and remote sensing symposium IGARSS ’94. vol 4, pp 2338–2341Google Scholar
  9. 9.
    Donohue KD, Rahmati M, Hassebrook LG, Gopalakrishnan P (1993) Parametric and nonparametric edge detection for speckle degraded images. Opt Eng 32(8):1935–1946CrossRefGoogle Scholar
  10. 10.
    Doornik JA (1999) Object-oriented matrix programming using Ox, 3 edn.Google Scholar
  11. 11.
    Doulgeris AP, Eltoft T (2010) Scale mixture of Gaussian modelling of polarimetric SAR data. EURASIP J Adv Signal Process 2010(874592)Google Scholar
  12. 12.
    Fox AJ (1972) Outliers in time series. J Royal Stat Soc Ser B (Methodological) 34(3):350–363MathSciNetzbMATHGoogle Scholar
  13. 13.
    Freitas CC, Frery AC, Correia AH (2005) The polarimetric G distribution for SAR data analysis. Environmetrics 16(1):13–31MathSciNetCrossRefGoogle Scholar
  14. 14.
    Frery AC, Correia AH, Freitas CC (2007) Classifying multifrequency fully polarimetric imagery with multiple sources of statistical evidence and contextual information. IEEE Trans Geosci Remote Sens 45:3098–3109CrossRefGoogle Scholar
  15. 15.
    Frery AC, Cribari-Neto F, Souza MO (2004) Analysis of minute features in speckled imagery with maximum likelihood estimation. EURASIP J Appl Signal Process 2004(16):2476–2491zbMATHCrossRefGoogle Scholar
  16. 16.
    Frery AC, Muller HJ, Yanasse CCF, Sant’Anna SJS (1997) A model for extremely heterogeneous clutter. IEEE Trans Geosci Remote Sens 35(3): 648–659CrossRefGoogle Scholar
  17. 17.
    Frery AC, Nascimento ADC, Cintra RJ (2010) Contrast in speckled imagery with stochastic distances. In: International conference on image processing (ICIP), Hong Kong, pp 26–29Google Scholar
  18. 18.
    Frery AC, Sant’Anna SJS, Mascarenhas NDA, Bustos OH (1997) Robust inference techniques for speckle noise reduction in 1-look amplitude SAR images. Appl Signal Process 4:61–76Google Scholar
  19. 19.
    Galland F, Nicolas JM, Sportouche H, Roche M, Tupin F, Réfrégier P (2009) Unsupervised synthetic aperture radar image segmentation using Fisher distributions. IEEE Trans Geosci Remote Sens 47(8): 2966–2972CrossRefGoogle Scholar
  20. 20.
    Gambini J, Mejail M, Jacobo-Berlles J, Frery AC (2008) Accuracy of edge detection methods with local information in speckled imagery. Stat Comput 18(1):15–26MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gao G (2010) Statistical modeling of SAR images: a survey. Sensors 10:775–795CrossRefGoogle Scholar
  22. 22.
    Goudail F, Réfrégier P (2004) Contrast definition for optical coherent polarimetric images. IEEE Trans Pattern Anal Mach Intell 26(7):947–951CrossRefGoogle Scholar
  23. 23.
    Gudnason J, Cui J, Brookes M (2009) HRR automatic target recognition from superresolution scattering center features. IEEE Trans Aerosp Electron Syst 45(4): 1512–1524CrossRefGoogle Scholar
  24. 24.
    Hoekman DH, Quiñones MJ (2000) Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon. IEEE Trans Geosci Remote Sens 38: 685–696CrossRefGoogle Scholar
  25. 25.
    Horn R (1996) The DLR airborne SAR project E-SAR. In: Geoscience and remote sensing symposium, vol 3. IEEE Press, New Jersey, pp 1624–1628Google Scholar
  26. 26.
    Inglada J, Mercier G (2007) A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans Geosci Remote Sens 45(5):1432–1445CrossRefGoogle Scholar
  27. 27.
    Karoui I, Fablet R, Boucher JM, Pieczynski W, Augustin JM (2008) Fusion of textural statistics using a similarity measure: Application to texture recognition and segmentation. Pattern Anal Appl 11(3-4):425–434MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kersten PR, Lee JS, Ainsworth TL (2005) Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering. IEEE Trans Geosci Remote Sens 43(3): 519–527CrossRefGoogle Scholar
  29. 29.
    Kuruoglu EE, Zerubia J (2004) Modeling SAR images with a generalization of the Rayleigh distribution. IEEE Trans Image Process 13(4):527–533CrossRefGoogle Scholar
  30. 30.
    Lee JS, Hoppel KW, Mango SA, Miller AR (1994) Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans Geosci Remote Sens 32(5): 1017–1028CrossRefGoogle Scholar
  31. 31.
    Lim DH, Ju Jang S (2002) Comparison of two-sample tests for edge detection in noisy images. J Royal Stat Soc Ser D (the statistician) 51(1):21–30MathSciNetCrossRefGoogle Scholar
  32. 32.
    Maillard P, Clausi DA (2005) Comparing classification metrics for labeling segmented remote sensing images. In: Computer and robot vision proceedings of the 2nd Canadian conference on computer and robot vision (CRV 2005), pp 421–428Google Scholar
  33. 33.
    Manolova A, Guérin-Dugué A (2008) Classification of dissimilarity data with a new flexible Mahalanobis-like metric. Pattern Anal Appl 11(3-4):337–351CrossRefGoogle Scholar
  34. 34.
    Marghany M, Hashim M (2010) Texture entropy algorithm for automatic detection of oil spill from RADARSAT-1 SAR data. Int J Phys Sci 5(9): 1475–1480Google Scholar
  35. 35.
    Marsaglia G, Tsang WW, Wang J (2003) Evaluating Kolmogorov’s distribution. J Stat Softw 8(18):1–4Google Scholar
  36. 36.
    Mejail ME, Frery AC, Jacobo-Berlles J, Bustos OH (2001) Approximation of distributions for SAR images: Proposal, evaluation and practical consequences. Lat Am Appl Res 31:83–92Google Scholar
  37. 37.
    Mejail ME, Jacobo-Berlles J, Frery AC, Bustos OH (2003) Classification of SAR images using a general and tractable multiplicative model. Int J Remote Sens 24(18): 3565–3582CrossRefGoogle Scholar
  38. 38.
    Mercier G, Moser G, Serpico S (2008) Conditional copulas for change detection in heterogeneous remote sensing images. IEEE Trans Geosci Remote Sens 46(5):1428–1441CrossRefGoogle Scholar
  39. 39.
    Morio J, Réfrégier P, Goudail F, Dubois-Fernandez PC, Dupuis X (2008) Information theory-based approach for contrast analysis in polarimetric and/or interferometric SAR images. IEEE Trans Geosci Remote Sens 46(8):2185–2196CrossRefGoogle Scholar
  40. 40.
    Nascimento ADC, Cintra RJ, Frery AC (2010) Hypothesis testing in speckled data with stochastic distances. IEEE Trans Geosci Remote Sens 48(1): 373–385CrossRefGoogle Scholar
  41. 41.
    Oliver C, Quegan S (1998) Understanding synthetic aperture radar images. Artech HouseGoogle Scholar
  42. 42.
    Salicrú M, Menéndez ML, Pardo L, Morales D (1994) On the applications of divergence type measures in testing statistical hypothesis. J Multivar Anal 51:372–391MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Silva M, Cribari-Neto F, Frery AC (2008) Improved likelihood inference for the roughness parameter of the GA0 distribution. Environmetrics 19(4):347–368MathSciNetCrossRefGoogle Scholar
  44. 44.
    Smirnov NV (1933) Estimate of deviation between empirical distribution functions in two independent. Mosc Univ Math Bull 2(2):3–16Google Scholar
  45. 45.
    Tison C, Nicolas JM, Tupin F, Maitre H (2004) A new statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE Trans Geosci Remote Sens 42(10): 2046–2057CrossRefGoogle Scholar
  46. 46.
    Vasconcellos KLP, Frery AC, Silva LB (2005) Improving estimation in speckled imagery. Comput Stat 20(3):503–519MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Zhang Q (2005) Research on detection methods of vehicle targets from sar images based on statistical model. Master’s thesis, National University of Defence Technology, Hunan, ChinaGoogle Scholar
  48. 48.
    Zhang YD, Wu LN, Wei G (2009) A new classifier for polarimetric SAR. Prog Electromagn Res 94:83–104CrossRefGoogle Scholar
  49. 49.
    Ziou D, Bouguila N, Allili MS, El-Zaart A (2009) Finite gamma mixture modeling using minimum message length inference: application to SAR image analysis. Int J Remote Sens 30: 771–792CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Renato J. Cintra
    • 1
  • Alejandro C. Frery
    • 2
  • Abraão D. C. Nascimento
    • 3
  1. 1.Departamento de EstatísticaUniversidade Federal de Pernambuco, Cidade UniversitáriaRecifeBrazil
  2. 2.CPMAT & LCCV, Instituto de ComputaçãoUniversidade Federal de AlagoasMaceióBrazil
  3. 3.Graduate Program in StatisticsUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations