Pattern Analysis and Applications

, Volume 13, Issue 2, pp 213–221 | Cite as

Kernel relevance weighted discriminant analysis for face recognition

  • Khalid Chougdali
  • Mohamed Jedra
  • Nouredine Zahid
Theoretical Advances


In this paper, we propose a new kernel discriminant analysis called kernel relevance weighted discriminant analysis (KRWDA) which has several interesting characteristics. First, it can effectively deal with the small sample size problem by using a QR decomposition on scatter matrices. Second, by incorporating a weighting function into discriminant criterion, it overcomes overemphasis on well-separated classes and hence can work under more realistic situations. Finally, using kernel theory, it handle non linearity efficiently. In order to improve performance of the proposed algorithm, we introduce two novel kernel functions and compare them with some commonly used kernels on face recognition field. We have performed multiple face recognition experiments to compare KRWDA with other dimensionality reduction methods showing that KRWDA consistently gives the best results.


Kernel discriminant analysis RWLDA Kernel functions Small sample Size problem Face recognition 



The authors wish to thank the anonymous reviewers, whose comments were a great help to raise the level of technical and formal correctness of this paper.


  1. 1.
    Zhao W, Chellappa R, Rosenfeld A, Phillips PJ (2000) Face recognition: a literature survey. CS-Tech Report-4167, University of MarylandGoogle Scholar
  2. 2.
    Fukunaga K (1990) Introduction to statistical pattern recognition. Academic Press, New YorkzbMATHGoogle Scholar
  3. 3.
    Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRefGoogle Scholar
  4. 4.
    Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans PAMI 19(7):711–720Google Scholar
  5. 5.
    Swets DL, Weng J (1996) Using discriminant eigenfeatures for image retrieval. IEEE Trans Pattern Anal Mach Intell 18(8):831–836CrossRefGoogle Scholar
  6. 6.
    Ye J, Li Q (2004) LDA/QR: an efficient and effective dimension reduction algorithm and its theoretical foundation. Pattern Recognition 37(4):851–854CrossRefMathSciNetGoogle Scholar
  7. 7.
    Loog M, Duin RPW, Hacb-Umbach R (2001) Multiclass linear dimension reduction by weighted pairwise Fisher criteria. IEEE Trans PAMI 23(7):762–766Google Scholar
  8. 8.
    Lotlikar R, Kothari R (2000) Fractional-step dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 22(6):623–627CrossRefGoogle Scholar
  9. 9.
    Tang EK, Suganthan PN, Yao X, Qin AK (2005) Linear dimensionality reduction using relevance weighted LDA. Pattern recognition 38(4):485–493zbMATHCrossRefGoogle Scholar
  10. 10.
    Golub GH, Loan CFV (1996) Matrix computation, 3rd edn. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  11. 11.
    Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404CrossRefGoogle Scholar
  12. 12.
    Scholkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a Kernel eigenvalue problem. Neural Comput 10(5):1299–1319CrossRefGoogle Scholar
  13. 13.
    Yang MH, Ahuja N, Kriegman D (2000) Face recognition using kernel eigenfaces. In: Proceedings of international conference on image processing, pp 37–40Google Scholar
  14. 14.
    Mika S, Ratsch G, Weston J (1999) Fisher discriminant analysis with kernels. Neural Netw Signal Process 9:41–48Google Scholar
  15. 15.
    Liu Q, Huang R, Lu H, Ma S (2002) Face recognition using kernel-based Fisher discriminant analysis. In: Proceedings of the 5th IEEE international conference on automatic face and gesture recognition, pp 205–211Google Scholar
  16. 16.
    Huang MH (2002) Kernel eigenfaces vs. Kernel Fisherfaces: face recognition using kernel methods. In: Proceedings of the 5th IEEE international conference on automatic face and gesture recognition, pp 215–220Google Scholar
  17. 17.
    Liu Q, Tang X, Lu H, Ma S (2006) Face recognition using kernel scatter-difference-based discriminant analysis. IEEE Trans Neural Netw 17:1081–1085CrossRefGoogle Scholar
  18. 18.
    Liu C (2004) Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Trans Pattern Anal Mach Intell 26(5): 572–581CrossRefGoogle Scholar
  19. 19.
    Scholkopf B, Smola A (2002) Learning with kernels: support vector machines, regularization, optimization and beyond. MIT Press, CambridgeGoogle Scholar
  20. 20.
    Georghiades A, Belhumeur P, Kriegman’s D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):642–660CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Khalid Chougdali
    • 1
  • Mohamed Jedra
    • 1
  • Nouredine Zahid
    • 1
  1. 1.Laboratory of Conception and Systems, Faculty of Science AgdalMohammed V UniversityRabatMorocco

Personalised recommendations