Advertisement

Pattern Analysis and Applications

, Volume 13, Issue 1, pp 113–129 | Cite as

A survey of graph edit distance

  • Xinbo Gao
  • Bing Xiao
  • Dacheng Tao
  • Xuelong Li
Theoretical Advances

Abstract

Inexact graph matching has been one of the significant research foci in the area of pattern analysis. As an important way to measure the similarity between pairwise graphs error-tolerantly, graph edit distance (GED) is the base of inexact graph matching. The research advance of GED is surveyed in order to provide a review of the existing literatures and offer some insights into the studies of GED. Since graphs may be attributed or non-attributed and the definition of costs for edit operations is various, the existing GED algorithms are categorized according to these two factors and described in detail. After these algorithms are analyzed and their limitations are identified, several promising directions for further research are proposed.

Keywords

Inexact graph matching Graph edit distance Attributed graph Non-attributed graph 

Notes

Acknowledgments

We want to thank the helpful comments and suggestions from the anonymous reviewers. This research has been partially supported by National Science Foundation of China (60771068, 60702061, 60832005), the Open-End Fund of National Laboratory of Pattern Recognition in China and National Laboratory of Automatic Target Recognition, Shenzhen University, China, the Program for Changjiang Scholars and innovative Research Team in University of China (IRT0645).

References

  1. 1.
    Umeyama S (1988) An eigendecomposition approach to weighted graph matching problems. IEEE Trans Pattern Anal Mach Intell 10(5):695–703zbMATHCrossRefGoogle Scholar
  2. 2.
    Bunke H (2000) Recent developments in graph matching. In: Proceedings of IEEE international conference on pattern recognition, Barcelona, pp 117–124Google Scholar
  3. 3.
    Caelli T, Kosinov S (2004) An eigenspace projection clustering method for inexact graph matching. IEEE Trans Pattern Anal Mach Intell 26(4):515–519CrossRefGoogle Scholar
  4. 4.
    Cross ADJ, Wilson RC, Hancock ER (1997) Inexact graph matching using genetic search. Pattern Recognit 30(7):953–970CrossRefGoogle Scholar
  5. 5.
    Wagner RA, Fischer MJ (1974) The string-to-string correction problem. J ACM 21(1):168–173zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Pavlidis JRT (1994) A shape analysis model with applications to a character recognition system. IEEE Trans Pattern Anal Mach Intell 16(4):393–404CrossRefGoogle Scholar
  7. 7.
    Wang Y-K, Fan K-C, Horng J-T (1997) Genetic-based search for error-correcting graph isomorphism. IEEE Trans Syst Man Cybern B Cybern 27(4):588–597CrossRefGoogle Scholar
  8. 8.
    Sebastian TB, Klien P, Kimia BB (2004) Recognition of shapes by editing their shock graphs. IEEE Trans Pattern Anal Mach Intell 26(5):550–571CrossRefGoogle Scholar
  9. 9.
    He L, Han CY, Wee WG (2006) Object recognition and recovery by skeleton graph matching. In: Proceedings of IEEE international conference on multimedia and expo, Toronto, pp 993–996Google Scholar
  10. 10.
    Shearer K, Bunke H, Venkatesh S (2001) Video indexing and similarity retrieval by largest common subgraph detection using decision trees. Pattern Recognit 34(5):1075–1091zbMATHCrossRefGoogle Scholar
  11. 11.
    Lee J (2006) A graph-based approach for modeling and indexing video data. In: Proceedings of IEEE international symposium on multimedia, San Diego, pp 348–355Google Scholar
  12. 12.
    Tao D, Tang X (2004) Nonparametric discriminant analysis in relevance feedback for content-based image retrieval. In: Proceedings of IEEE international conference on pattern recognition, Cambridge, pp 1013–1016Google Scholar
  13. 13.
    Tao D, Tang X, Li X et al (2006) Kernel direct biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm. IEEE Trans Multimedia 8(4):716–727CrossRefGoogle Scholar
  14. 14.
    Tao D, Tang X, Li X (2008) Which components are important for interactive image searching? IEEE Trans Circuits Syst Video Technol 18(1):1–11CrossRefGoogle Scholar
  15. 15.
    Christmas WJ, Kittler J, Petrou M (1995) Structural matching in computer vision using probabilistic relaxation. IEEE Trans Pattern Anal Mach Intell 17(8):749–764CrossRefGoogle Scholar
  16. 16.
    Gao X, Zhong J, Tao D et al (2008) Local face sketch synthesis learning. Neurocomputing 71(10–12):1921–1930CrossRefGoogle Scholar
  17. 17.
    Sanfeliu A, Fu KS (1983) A distance measure between attributed relational graphs for pattern recognition. IEEE Trans Syst Man Cybern 13(3):353–362zbMATHGoogle Scholar
  18. 18.
    Messmer BT, Bunke H (1994) Efficient error-tolerant subgraph isomorphism detection. Shape Struct Pattern Recognit:231–240Google Scholar
  19. 19.
    Messmer BT, Bunke H (1998) A new algorithm for error-tolerant subgraph isomorphism detection. IEEE Trans Pattern Anal Mach Intell 20(5):493–504CrossRefGoogle Scholar
  20. 20.
    Bunke H (1997) On a relation between graph edit distance and maximum common subgraph. Pattern Recognit Lett 18(8):689–694CrossRefMathSciNetGoogle Scholar
  21. 21.
    Bunke H (1999) Error correcting graph matching: on the influence of the underlying cost function. IEEE Trans Pattern Anal Mach Intell 21(9):917–922CrossRefGoogle Scholar
  22. 22.
    Shasha D, Zhang K (1989) Simple fast algorithms for the editing distance between trees and related problems. SIAM J Comput 18(6):1245–1262zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Zhang K (1996) A constrained edit distance between unordered labeled trees. Algorithmica 15(3):205–222zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Myers R, Wilson RC, Hancock ER (2000) Bayesian graph edit distance. IEEE Trans Pattern Anal Mach Intell 22(6):628–635CrossRefGoogle Scholar
  25. 25.
    Wei J (2004) Markov edit distance. IEEE Trans Pattern Anal Mach Intell 26(3):311–321CrossRefGoogle Scholar
  26. 26.
    Marzal A, Vidal E (1993) Computation of normalized edit distance and applications. IEEE Trans Pattern Anal Mach Intell 15(9):926–932CrossRefGoogle Scholar
  27. 27.
    Myers R, Wilson RC, Hancock ER (1998) Efficient relational matching with local edit distance. In: Proceedings of IEEE international conference on pattern recognition, Brisbane, pp 1711–1714Google Scholar
  28. 28.
    Wilson RC, Hancock ER (1997) Structural matching by discrete relaxation. IEEE Trans Pattern Anal Mach Intell 19(6):634–648CrossRefGoogle Scholar
  29. 29.
    Levenshtein V (1966) Binary codes capable of correcting deletions, insertions, and reversals. Sov Phys Dokl 10(8):707–710MathSciNetGoogle Scholar
  30. 30.
    Neuhaus M, Bunke H (2004) A probabilistic approach to learning costs for graph edit distance. In: Proceedings of IEEE international conference on pattern recognition, Cambridge, pp 389–393Google Scholar
  31. 31.
    Robles-Kelly A, Hancock ER (2005) Graph edit distance from spectral seriation. IEEE Trans Pattern Anal Mach Intell 27(3):365–378CrossRefGoogle Scholar
  32. 32.
    Xiao B, Gao X, Tao D et al (2008) HMM-based graph edit distance for image indexing. Int J Imag Syst Tech 18(2–3):209–218CrossRefGoogle Scholar
  33. 33.
    Gao X, Xiao B, Tao D et al (2008) Image categorization: graph edit distance + edge direction histogram. Pattern Recognit 47(10):3179–3191CrossRefGoogle Scholar
  34. 34.
    Neuhaus M, Bunke H (2005) Self-organizing maps for learning the edit costs in graph matching. IEEE Trans Syst Man Cybern B Cybern 35(3):503–514CrossRefGoogle Scholar
  35. 35.
    Robles-Kelly A, Hancock ER (2004) String edit distance, random walks and graph matching. Int J Pattern Recogn Artif Intell 18(3):315–327CrossRefGoogle Scholar
  36. 36.
    Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39(1):1–38zbMATHMathSciNetGoogle Scholar
  37. 37.
    Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Azcarraga AP, Hsieh M-H, Pan SL et al (2005) Extracting salient dimensions for automatic SOM labeling. IEEE Trans Syst Man Cybern C Appl Rev 35(4):595–600CrossRefGoogle Scholar
  39. 39.
    Kohonen T (1995) Self organizing maps. Springer, New YorkGoogle Scholar
  40. 40.
    Bhattacharyya S, Dutta P, Maulik U (2007) Binary object extraction using bi-directional self-organizing neural network (BDSONN) architecture with fuzzy context sensitive thresholding. Pattern Anal Appl 10(4):345–360CrossRefMathSciNetGoogle Scholar
  41. 41.
    Neuhaus M, Bunke H (2006) A convolution edit kernel for error-tolerant graph matching. In: Proceedings of IEEE international conference on pattern recognition, Hong Kong, pp 220–223Google Scholar
  42. 42.
    Fernández M-L, Valiente G (2001) A graph distance metric combining maximum common subgraph and minimum common supergraph. Pattern Recognit Lett 22(6–7):753–758zbMATHCrossRefGoogle Scholar
  43. 43.
    Justice D, Hero A (2006) A binary linear programming formulation of the graph edit distance. IEEE Trans Pattern Anal Mach Intell 28(8):1200–1214CrossRefGoogle Scholar
  44. 44.
    Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1(2):224–227CrossRefGoogle Scholar
  45. 45.
    Dunn JC (1974) Well-separated clusters and optimal fuzzy partitions. J Cybern 4:95–104CrossRefMathSciNetGoogle Scholar
  46. 46.
    Hubert LJ, Schultz JV (1976) Quadratic assignment as a general data analysis strategy. Br J Math Stat Psychol 29:190–241zbMATHMathSciNetGoogle Scholar
  47. 47.
    Goodman LA, Kruskal WH (1954) Measures of association for cross classification. J Am Stat Assoc 49:732–764zbMATHCrossRefGoogle Scholar
  48. 48.
    Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3(1):1–27CrossRefMathSciNetGoogle Scholar
  49. 49.
    Rand W (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850CrossRefGoogle Scholar
  50. 50.
    Jain A, Dubes R (1988) Algorithms for clustering data. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  51. 51.
    Fowlkes EB, Mallows CL (1983) A method for comparing two hierarchical clusterings. J Am Stat Assoc 78:553–584zbMATHCrossRefGoogle Scholar
  52. 52.
    Ristad E, Yianilos P (1998) Learning string edit distance. IEEE Trans Pattern Anal Mach Intell 20(5):522–532CrossRefGoogle Scholar
  53. 53.
    García V, Mollineda RA, Sánchez JS (2008) On the k-NN performance in a challenging scenario of imbalance and overlapping. Pattern Anal Appl 11(3–4):269–280Google Scholar
  54. 54.
    Neuhaus M, Bunke H (2005) Edit distance based kernel functions for attributed graph matching. In: Proceedings of 5th international workshop graph-based representations in pattern recognition, Poitiers, pp 352–361Google Scholar
  55. 55.
    Artner TG, Flach P, Wrobel S (2003) On graph kernels: hardness results and efficient alternatives. In: Proceedings of 16th annual conference on learning theory, Washington, pp 129–143Google Scholar
  56. 56.
    Saux BL, Bunke H (2005) Feature selection for graph-based image classifiers. In: Proceedings of 2nd Iberian conference on pattern recognition and image analysis, Estoril, pp 147–154Google Scholar
  57. 57.
    Dunford-Shore B, Sulaman W, Feng B et al (2002) Klotho: biochemical compounds declarative database. http://www.biocheminfo.org/klotho/
  58. 58.
    Yu H, Hancock ER (2006) String kernels for matching seriated graphs. In: Proceedings of IEEE international conference on pattern recognition, Hong Kong, pp 224–228Google Scholar
  59. 59.
    Robles-Kelly A, Hancock ER (2003) Edit distance from graph spectra. In: Proceedings of IEEE international conference on computer vision, Nice, pp 234–241Google Scholar
  60. 60.
    Qiu HJ, Hancock ER (2006) Graph matching and clustering using spectral partitions. Pattern Recognit 39(1):22–34CrossRefGoogle Scholar
  61. 61.
    Bille P (2005) A survey on tree edit distance and related problems. Theor Comput Sci 337(1–3):217–239zbMATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Torsello A, Robles-Kelly A, Hancock ER (2007) Discovering shape classes using tree edit-distance and pairwise clustering. Int J Comput Vis 72(3):259–285CrossRefGoogle Scholar
  63. 63.
    Torsello A, Hancock ER (2003) Computing approximate tree edit distance using relaxation labeling. Pattern Recognit Lett 24(8):1089–1097zbMATHCrossRefGoogle Scholar
  64. 64.
    Torsello A, Hancock ER (2007) Graph embedding using tree edit-union. Pattern Recognit 40(5):1393–1405zbMATHCrossRefGoogle Scholar
  65. 65.
    Torsello A, Hancock ER (2001) Efficiently computing weighted tree edit distance using relaxation labeling. In: Proceedings of energy minimization methods in computer vision and pattern recognition. Springer, Sophia Antipolis, pp 438–453Google Scholar
  66. 66.
    Bunke H, Kandel A (2000) Mean and maximum common subgraph of two graphs. Pattern Recognit Lett 21(2):163–168CrossRefGoogle Scholar
  67. 67.
    Vision and Autonomous Systems Center’s Image Database. http://vasc.ri.cmu.edu//idb/html/motion/house/index.html
  68. 68.
  69. 69.
    Fujisawa K, Futakata Y, Kojima M et al (2008) Sdpa-m user’s manual. http://sdpa.is.titech.ac.jp/SDPA-M
  70. 70.
  71. 71.
    Torsello A, Robles-Kelly A, Hancock ER (2007) Discovering shape classes using tree edit-distance and pairwise clustering. Int J Comput Vis 72(3):259–285CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  1. 1.School of Electronic EngineeringXidian UniversityXi’anPeople’s Republic of China
  2. 2.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.School of Computer Science and Information Systems, Birkbeck CollegeUniversity of LondonLondonUK

Personalised recommendations