Pattern Analysis and Applications

, Volume 13, Issue 1, pp 79–83

Face recognition with adaptive local hyperplane algorithm

Theoretical Advances

Abstract

The paper introduces a novel adaptive local hyperplane (ALH) classifier and it shows its superior performance in the face recognition tasks. Four different feature extraction methods (2DPCA, (2D)2PCA, 2DLDA and (2D)2LDA) have been used in combination with five classifiers (K-nearest neighbor (KNN), support vector machine (SVM), nearest feature line (NFL), nearest neighbor line (NNL) and ALH). All the classifiers and feature extraction methods have been applied to the renown benchmarking face databases—the Cambridge ORL database and the Yale database and the ALH classifier with a LDA based extractor outperforms all the other methods on them. The ALH algorithm on these two databases is very promising but more study on larger databases need yet to be done to show all the advantages of the proposed algorithm.

Keywords

Face recognition Adaptive local hyperplane ALH 

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  1. 1.Faculty of EngineeringThe University of AucklandAucklandNew Zealand
  2. 2.Virginia Commonwealth UniversityRichmondUSA

Personalised recommendations