Pattern Analysis and Applications

, Volume 12, Issue 3, pp 261–270

Towards a measure of biometric feature information

Theoretical Advances

Abstract

This paper develops an approach to measure the information content of a biometric feature representation. We define biometric information as the decrease in uncertainty about the identity of a person due to a set of biometric measurements. We then show that the biometric feature information for a person may be calculated by the relative entropy \({D(p\|q)}\) between the population feature distribution q and the person’s feature distribution p. The biometric information for a system is the mean \({D(p\|q)}\) for all persons in the population. In order to practically measure \({D(p\|q)}\) with limited data samples, we introduce an algorithm which regularizes a Gaussian model of the feature covariances. An example of this method is shown for PCA and Fisher linear discriminant (FLD) based face recognition, with biometric feature information calculated to be 45.0 bits (PCA), 37.0 bits (FLD) and 55.6 bits (fusion of PCA and FLD features). Finally, we discuss general applications of this measure.

Keywords

Biometric features Relative entropy Face recognition Information content 

References

  1. 1.
    Adler A (2005) Vulnerabilities in biometric encryption systems. Audio- and Video-based Biometric Person Auth. Tarrytown, NY, USAGoogle Scholar
  2. 2.
    Adler A, Youmaran R, Loyka S (2005) Information content of biometric features. In: Biometrics consortium conference, Washington, DC, USAGoogle Scholar
  3. 3.
    Alter O, Brown PO, Botstein D (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci 97:10101–10106CrossRefGoogle Scholar
  4. 4.
    Craw I, Costen NP, Kato T, Akamatsu S (1999) How should we represent faces for automatic recognition? IEEE Trans Pat Anal Mach Intel 21:725–736CrossRefGoogle Scholar
  5. 5.
    Conover WJ (1980) Practical nonparametric statistics. Wiley, New YorkGoogle Scholar
  6. 6.
    Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New YorkMATHCrossRefGoogle Scholar
  7. 7.
    Daugman J (2003) The importance of being random: Statistical principles of iris recognition. Pattern Recognit 36:279–291CrossRefGoogle Scholar
  8. 8.
    Doddington G, Liggett W, Martin A, Przybocki M, Reynolds D (1998) Sheep, goats, lambs and wolves: an analysis of individual differences in speaker recognition performance. In: Proceedings of international conference in auditory-visual speech processing. Sidney, AustraliaGoogle Scholar
  9. 9.
    Dodis Y, Reyzin L, Smith A (2004) Fuzzy Extractors and cryptography, or how to use your fingerprints. In: Proceedings of Eurocrypt’04, http://eprint.iacr.org/2003/235/
  10. 10.
    Draper BA, Baek K, Bartlett MS, Beveridge JR (2003) Recognizing faces with PCA and ICA. Comput Vis Image Underst 91:115–137CrossRefGoogle Scholar
  11. 11.
    Golfarelli M, Maio D, Maltoni D (1997) On the error-reject tradeoff in biometric verification systems. IEEE Trans Pattern Anal Mach Intell 19:786–796CrossRefGoogle Scholar
  12. 12.
    Grother P (2000) Software tools for an eigenface implementation, National Institute of Standards and Technology. http://www.nist.gov/humanid/feret/
  13. 13.
    Li S, Jain A (eds) (2005) Handbook of face recognition. Springer, HeidelbergGoogle Scholar
  14. 14.
    Lee TW (1999) Nonlinear approaches to independent component analysis. Proc American Institute of PhysicsGoogle Scholar
  15. 15.
    Marcialis GL, Roli F (2004) Fusion of appearance-based face recognition algorithms. Pattern Anal Appl 7:151–163MathSciNetGoogle Scholar
  16. 16.
    Newton EM, Sweeney L, Malin B (2005) Preserving privacy by de-identifying face images. IEEE Trans Knowl Data Eng 17:232–243CrossRefGoogle Scholar
  17. 17.
    Pankanti S, Prabhakar S, Jain AK (2000) On the individuality of fingerprints. IEEE Trans Pat Anal Mach Intell 24:1010–1025CrossRefGoogle Scholar
  18. 18.
    Phillips PJ, Grother P, Micheals RJ, Blackburn DM, Tabassi E, Bone JM (2003) FRVT 2002: Evaluation Report, NIST, March 2003. http://www.frvt.org/DLs/FRVT_2002_Evaluation_Report.pdf
  19. 19.
    Phillips PJ, Scruggs TW, O’Toole AJ, Flynn PJ, Bowyer KW, Svhott CL, Sharpe M (2007) FRVT 2006: Evaluation Report, NIST, March 2007. http://www.frvt.org/FRVT2006/docs/FRVT2006andICE2006LargeScaleReport.pdf
  20. 20.
    Ross A, Jain A (2003) Information fusion in biometrics. Pattern Recognit Lett 24:2115–2125CrossRefGoogle Scholar
  21. 21.
    Soutar C, Roberge D, Stoianov A, Gilroy R, Vijaya B (1998) Biometric encryption using image processing. Proc SPIE Int Soc Opt Eng 3314:178–188Google Scholar
  22. 22.
    Tolba AS, Abu-Rezq AN (2000) Combined classifiers for invariant face recognition. Pattern Anal Appl 3:289–302CrossRefMathSciNetGoogle Scholar
  23. 23.
    Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3:71–86CrossRefGoogle Scholar
  24. 24.
    Uludag U, Pankanti S, Prabhakar S, Jain AK (2004) Biometric cryptosystems: issues and challenges. Proc IEEE 92:948–960CrossRefGoogle Scholar
  25. 25.
    Wayman JS (2004) The cotton ball problem. In: Biometrics Conference. Washington, DC, USAGoogle Scholar
  26. 26.
    Xiang C, Fan XA, Lee TH (2004) Face recognition using recursive Fisher linear discriminant. In: Communications, Circuits and Systems international Conference on 27–29 2004Google Scholar
  27. 27.
    Yang J, Zhang D, Yang J-Y (2003) A generalised K–L expansion method which can deal with small sample size and high-dimensional problems. Pattern Analysis and Applications 6:47–54MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  1. 1.Carleton UniversityOttawaCanada
  2. 2.University of OttawaOttawaCanada

Personalised recommendations