Advertisement

Pattern Analysis and Applications

, Volume 12, Issue 2, pp 99–115 | Cite as

Semi-supervised discriminative classification with application to tumorous tissues segmentation of MR brain images

  • Yangqiu SongEmail author
  • Changshui Zhang
  • Jianguo Lee
  • Fei Wang
  • Shiming Xiang
  • Dan Zhang
Theoretical Advances

Abstract

Due to the large data size of 3D MR brain images and the blurry boundary of the pathological tissues, tumor segmentation work is difficult. This paper introduces a discriminative classification algorithm for semi-automated segmentation of brain tumorous tissues. The classifier uses interactive hints to obtain models to classify normal and tumor tissues. A non-parametric Bayesian Gaussian random field in the semi-supervised mode is implemented. Our approach uses both labeled data and a subset of unlabeled data sampling from 2D/3D images for training the model. Fast algorithm is also developed. Experiments show that our approach produces satisfactory segmentation results comparing to the manually labeled results by experts.

Keywords

Magnetic resonance imaging (MRI) Brain tumor segmentation Semi-automated segmentation Gaussian random field (GRF) Gaussian process (GP) 

Notes

Acknowledgments

This work is funded by the Basic Research Foundation of Tsinghua National Laboratory for Information Science and Technology (TNList). We would like to thank the anonymous reviewers for their valuable suggestions. We would also like to give special thanks to Qian Wu, Weibei Dou and Yonglei Zhou for providing us their detailed experimental data and code.

References

  1. 1.
    Song Y, Zhang C, Lee J, Wang F (2006) A discriminative method for semi-automated tumorous tissues segmentation of MR brain images. In: Proceedings of CVPR workshop on mathematical methods in biomedical image analysis (MMBIA). p 79Google Scholar
  2. 2.
    Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–337CrossRefGoogle Scholar
  3. 3.
    Liew AWC, Yan H (2006) Current methods in the automatic tissue segmentation of 3D magnetic resonance brain images. Curr Med Imaging Rev 2(1):91–103CrossRefGoogle Scholar
  4. 4.
    Leemput KV, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18(10):897–908CrossRefGoogle Scholar
  5. 5.
    Pham D, Prince J (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18(9):737–752CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Brady M, Smith SM (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Trans Med Imaging 20(1):45–57CrossRefGoogle Scholar
  7. 7.
    Marroquín JL, Vemuri BC, Botello S, Calderón F, Fernández-Bouzas A (2002) An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Trans Med Imaging 21(8):934–945CrossRefGoogle Scholar
  8. 8.
    Liew AWC, Yan H (2003) An adaptive spatial fuzzy clustering algorithm for 3d MR image segmentation. IEEE Trans Med Imaging 22(9):1063–1075CrossRefGoogle Scholar
  9. 9.
    Prastawa M, Gilmore JH, Lin W, Gerig G (2004) Automatic segmentation of neonatal brain MRI. In: Proceedings of medical image computing and computer-assisted intervention (MICCAI). pp 10–17Google Scholar
  10. 10.
    Hall L, Bensaid A, Clarke L, Velthuizen R, Silbiger M, Bezdek J (1992) A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Med Imaging 3(5):672–682Google Scholar
  11. 11.
    Sammouda R, Niki N, Nishitani H (1996) A comparison of Hopfield neural network and Boltzmann machine in segmenting MR images of the brain. IEEE Trans Nucl Sci 43(6):3361–3369CrossRefGoogle Scholar
  12. 12.
    Zhou J, Chan KL, Chongand VFH, Krishnan SM (2005) Extraction of brain tumor from MR images using one-class support vector machine. In: Proceedings of 27th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBS). pp 6411–6414Google Scholar
  13. 13.
    Moon N, Bullitt E, Leemput KV, Gerig G (2002) Automatic brain and tumor segmentation. In: Proceedings of 5th international conference on medical image computing and computer-assisted intervention (MICCAI). pp 372–379Google Scholar
  14. 14.
    Shen S, Sandham W, Granat M, Sterr A (2005) MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans Med Imaging 9(3):459–467Google Scholar
  15. 15.
    Li C, Goldgof D, Hall L (1993) Knowledge-based classification and tissue labeling of MR images of human brain. IEEE Trans Med Imaging 12(4):740–750CrossRefGoogle Scholar
  16. 16.
    Clark M, Hall L, Goldgof D, Velthuizen R, Murtagh F, Silbiger M (1998) Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging 17(2):187–201CrossRefGoogle Scholar
  17. 17.
    Cuadra M, Pollo C, Bardera A, Cuisenaire O, Villemure JG, Thiran JP (2004) Atlas-based segmentation of pathological MR brain images using a model of lesion growth. IEEE Trans Med Imaging 23(10):1301–1314CrossRefGoogle Scholar
  18. 18.
    Zhu Y, Yan Z (1997) Computerized tumor boundary detection using a hopfield neural network. IEEE Trans Med Imaging 16(1):55–67CrossRefGoogle Scholar
  19. 19.
    Droske M, Meyer B, Rumpf M, Schaller C (2001) An adaptive level set method for medical image segmentation. In: Proceedings of 17th international conference information processing in medical imaging (IPMI). Davis, CA, USA, pp 416–422Google Scholar
  20. 20.
    Lefohn AE, Cates JE, Whitaker RT (2003) Interactive, GPU-based level sets for 3D segmentation. In: Proceedings of medical image computing and computer-assisted intervention (MICCAI). Springer, Montreal, QC, Canada, pp 564–572Google Scholar
  21. 21.
    Prastawa M, Bullitt E, Ho S, Gerig G (2004) Robust estimation for brain tumor segmentation. In: Proceedings of medical image computing and computer-assisted intervention (MICCAI), pp 10–17Google Scholar
  22. 22.
    Guermeur Y (2002) Combining discriminant models with new multi-class SVMs. Pattern Anal Appl 5(2):168–179zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Tortorella F (2004) Reducing the classification cost of support vector classifiers through an ROC-based reject rule. Pattern Anal Appl 7(2):128–143MathSciNetGoogle Scholar
  24. 24.
    Debnath R, Takahide N, Takahashi H (2004) A decision based one-against-one method for multi-class support vector machine. Pattern Anal Appl 7(2):164–175MathSciNetGoogle Scholar
  25. 25.
    Sánchez JS, Mollineda RA, Sotoca JM (2007) An analysis of how training data complexity affects the nearest neighbor classifiers. Pattern Anal Appl 10(3):189–201CrossRefMathSciNetGoogle Scholar
  26. 26.
    Abe S (2007) Sparse least squares support vector training in the reduced empirical feature space. Pattern Anal Appl 10(3):203–214CrossRefMathSciNetGoogle Scholar
  27. 27.
    Herrero JR, Navarro JJ (2007) Exploiting computer resources for fast nearest neighbor classification. Pattern Anal Appl 10(4):265–275CrossRefMathSciNetGoogle Scholar
  28. 28.
    Tyree EW, Long JA (1998) A monte carlo evaluation of the moving method, k-means and two self-organising neural networks. Pattern Anal Appl 1(2):79–90zbMATHCrossRefGoogle Scholar
  29. 29.
    Chou CH, Su MC, Lai E (2004) A new cluster validity measure and its application to image compression. Pattern Anal Appl 7(2):205–220MathSciNetGoogle Scholar
  30. 30.
    Frigui H (2005) Unsupervised learning of arbitrarily shaped clusters using ensembles of gaussian models. Pattern Anal Appl 8(1-2):32–49CrossRefMathSciNetGoogle Scholar
  31. 31.
    Omran MGH, Salman A, Engelbrecht AP (2006) Dynamic clustering using particle swarm optimization with application in image segmentation. Pattern Anal Appl 8(4):332–344CrossRefMathSciNetGoogle Scholar
  32. 32.
    Seeger M (2001) Learning with labeled and unlabeled data. Technical report, Institute for ANC, Edinburgh, UK. http://www.dai.ed.ac.uk/seeger/papers.html
  33. 33.
    Zhu X (2005) Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, University of Wisconsin-Madison http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
  34. 34.
    Belkin M, Niyogi P (2003) Using manifold structure for partially labeled classification. In: Proceedings of advances in neural information processing systems (NIPS). MIT Press, Cambridge, pp 929–936Google Scholar
  35. 35.
    Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 1(1):1–48MathSciNetGoogle Scholar
  36. 36.
    Krishnapuram B, Williams D, Xue Y, Hartemink A, Carin L, Figueiredo M (2005) On semi-supervised classification. In: Proceedings of advances in neural information processing systems (NIPS). MIT Press, Cambridge, pp 721–728Google Scholar
  37. 37.
    Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B (2003) Learning with local and global consistency. In: Proceedings of advances in neural information processing systems (NIPS). MIT Press, Cambridge, pp 321–328Google Scholar
  38. 38.
    Zhou D, Schölkopf B (2005) Regularization on discrete spaces. In: Proceedings of pattern recognition, 27th DAGM symposium (DAGM-symposium). Lecture notes in computer science. Springer, Vienna, pp 361–368Google Scholar
  39. 39.
    Zhu X, Ghahramani Z, Lafferty JD (2003) Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of twentieth international conference of machine learning (ICML). AAAI Press, Washington, DC, USA, pp 912–919Google Scholar
  40. 40.
    Zhu X, Lafferty J, Ghahramani Z (2003) Semi-supervised learning: from Gaussian fields to Gaussian processes. Technical report CMU-CS-03-175, Computer Sciences, Carnegie Mellon University. http://www.cs.cmu.edu/zhuxj/publications.html
  41. 41.
    Sindhwani V, Chu W, Keerthi SS (2007) Semi-supervised Gaussian process classifiers. In: Proceedings of international joint conferences on artificial intelligence (IJCAI), pp 1059–1064Google Scholar
  42. 42.
    Fowlkes C, Belongie S, Chung F, Malik J (2004) Spectral grouping using the Nyström method. IEEE Trans Pattern Anal Mach Intell 26(2):214–225CrossRefGoogle Scholar
  43. 43.
    Grady L, Funka-Lea G (2004) Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials. In: Proceedings of ECCV workshops on CVAMIA and MMBIA, pp 230–245Google Scholar
  44. 44.
    Suri JS, Singh S, Reden L (2002) Computer vision and pattern recognition techniques for 2-D and 3-D MR cerebral cortical segmentation (part i): a state-of-the-art review. Pattern Anal Appl 5(1):46–76CrossRefMathSciNetGoogle Scholar
  45. 45.
    Suri JS, Singh S, Reden L (2002) Computer vision and pattern recognition techniques for 2-D and 3-D MR cerebral cortical segmentation (part i): a state-of-the-art review. Pattern Anal Appl 5(1):77–98CrossRefMathSciNetGoogle Scholar
  46. 46.
    Liang F, Mukherjee S, West M (2007) The use of unlabeled data in predictive modeling. Stat Sci 22(2):189–205Google Scholar
  47. 47.
    Zhu S (2003) Statistical modeling and conceptualization of visual patterns. IEEE Trans Pattern Anal Mach Intell 25(6):691–712CrossRefGoogle Scholar
  48. 48.
    German S, German D (1984) Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–742CrossRefGoogle Scholar
  49. 49.
    McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1(2):91–108CrossRefGoogle Scholar
  50. 50.
    Xu C, Prince JL (1998) Snakes, shapes and gradient vector flow. IEEE Trans Image Process 7(3):359–369zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Malladi R, Sethian J, Vemuri B (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175CrossRefGoogle Scholar
  52. 52.
    Boykov Y, Jolly MP (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: Proceedings of IEEE international conference on computer vision (ICCV), vol I. IEEE Computer Society, Vancouver, B.C., Canada, pp 105–112Google Scholar
  53. 53.
    Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239CrossRefGoogle Scholar
  54. 54.
    Li Y, Sun J, Tang CK, Shum HY (2004) Lazy snapping. ACM Trans Graph 23(3):303–308CrossRefGoogle Scholar
  55. 55.
    Rother C, Kolmogorov V, Blake A (2004) “Grab cut”: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3):309–314CrossRefGoogle Scholar
  56. 56.
    WU Q, Dou W, Chen Y, Constans J (2005) Fuzzy segementaion of cerebral tumorous tissues in MR images via support vector machine and fuzzy clustering. In: Proceedings of world congress of International Fuzzy Systems Association (IFSA). Tsinghua University Press, BeijingGoogle Scholar
  57. 57.
    Ulusoy I, Bishop C (2005) Generative versus discriminative methods for object recognition. In: Proceedings of computer vision and pattern recognition (CVPR), vol 2, pp 258–265Google Scholar
  58. 58.
    Abrahamsen P (1997) A review of Gaussian random fields and correlation functions, 2nd edn. Technical report 917, Norwegian Computing CenterGoogle Scholar
  59. 59.
    Neal RM (1997) Monte carlo implementation of Gaussian process models for Bayesian regression and classification. Technical report CRG-TR-97-2, Department of Computer Science, University of Toronto. http://www.cs.toronto.edu/radford/papers-online.html
  60. 60.
    Williams C, Barber D (1998) Bayesian classification with Gaussian processes. IEEE Trans Pattern Anal Mach Intell 20(12):1342–1351CrossRefGoogle Scholar
  61. 61.
    MacKay DJC (1998). In: Introduction to Gaussian processes. NATO ASI, vol 168. Springer, Berlin, pp 133–165Google Scholar
  62. 62.
    Chung F (1997) Spectral graph theory. Number 92 in CBMS regional conference series in mathematics. American Mathematical Society, ProvidenceGoogle Scholar
  63. 63.
    Seeger M (1999) Relationships between Gaussian processes, support vector machines and smoothing splines. Technical report, Institute for ANC, Edinburgh, UK. http://www.dai.ed.ac.uk/seeger/papers.html
  64. 64.
    Williams CKI, Seeger M (2001) Using the Nyström method to speed up kernel machines. In: Proceedings of advances in neural information processing systems (NIPS). MIT Press, Cambridge, pp 682–688Google Scholar
  65. 65.
    Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRefGoogle Scholar
  66. 66.
    Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical Recipes in C, 2nd edn. Cambridge University Press, CambridgezbMATHGoogle Scholar
  67. 67.
    Dou W, Ruan S, Chen Y, Bloyet D, Constans JM (2007) A framework of fuzzy information fusion for the segmentation of brain tumor tissues on mr images. Image Vis Comput 25(2):164–171CrossRefGoogle Scholar
  68. 68.
    Dou W, Ren Y, Wu Q, Ruan S, Chen Y, Bloyet D, Constans JM (2007) Fuzzy kappa for the agreement measure of fuzzy classifications. Neurocomputing 70(4-6):726–734Google Scholar
  69. 69.
    Tao D, Li X, Wu X, Maybank SJ (2007) General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans Pattern Anal Mach Intell 29(10):1700–1715CrossRefGoogle Scholar
  70. 70.
    Tao D, Li X, Hu W, Maybank SJ, Wu X (2007) Supervised tensor learning. Knowl Inf Syst 13(1):1–42Google Scholar
  71. 71.
    Lawrence ND, Jordan MI (2005) Semi-supervised learning via Gaussian processes. In: Proceedings of advances in neural information processing systems (NIPS 17). MIT Press, Cambridge, pp 753–760Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Yangqiu Song
    • 1
    Email author
  • Changshui Zhang
    • 1
  • Jianguo Lee
    • 1
  • Fei Wang
    • 1
  • Shiming Xiang
    • 1
  • Dan Zhang
    • 1
  1. 1.State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology (TNList), Department of AutomationTsinghua UniversityBeijingChina

Personalised recommendations