Advertisement

Pattern Analysis and Applications

, Volume 11, Issue 1, pp 21–32 | Cite as

Robust automated multiple view inspection

  • Luis PizarroEmail author
  • Domingo Mery
  • Rafael Delpiano
  • Miguel Carrasco
Theoretical Advances

Abstract

Recently, Automated Multiple View Inspection (AMVI) has been developed for automated defect detection of manufactured objects, and the framework was successfully implemented for calibrated image sequences. However, it is not easy to be implemented in industrial environments because the calibration is a difficult and an unstable process. To overcome these disadvantages, the robust AMVI strategy, which assumes that an unknown affine transformation exists between each pair of uncalibrated images, is proposed. This transformation is estimated using two complementary robust procedures: a global approximation of the affine mapping is computed by creating candidate correspondences via B-splines and selecting those which better satisfy the epipolar constraint for uncalibrated images. Then, we use this approximation as initial estimate of a robust intensity-based matching approach, which is applied locally on each potential defect. The result is that false alarms are discarded, and the defects of an industrial object are actually tracked along the uncalibrated image sequence. The method is successful as shown in our experiments on aluminum die castings.

Keywords

Automated visual inspection Uncalibrated images Image matching Sequence tracking Robustness X-ray imaging Radioscopic imaging system 

Notes

Acknowledgments

This work was supported by FONDECYT—Chile under grant no. 1040210.

References

  1. 1.
    Mery D, Filbert D (2002) Automated flaw detection in aluminum castings based on the tracking of potential defects in a radioscopic image sequence. IEEE Trans Rob Autom 18(6):890–901CrossRefGoogle Scholar
  2. 2.
    Mery D, Carrasco M (2005) Automated multiple view inspection based on uncalibrated image sequences. Lect Notes Comput Sci 3540:1238–1247CrossRefGoogle Scholar
  3. 3.
    Abramovich G, Barhak J, Spicer P (2005) Reconfigurable array for machine vision inspection (RAMVI). In: Proceedings of the 3rd international conference on reconfigurable manufacturing, Ann ArborGoogle Scholar
  4. 4.
    Spicer P, Bohl K, Abramovich G, Barhak J (2006) Robust calibration of a reconfigurable camera array for machine vision inspection (RAMVI) using rule-based colour recognition. In: Proceedings of the 1st international conference on computer vision theory and applications, Setúbal, pp 131–138Google Scholar
  5. 5.
    Gumustekin S (2004) A visual inspection system using a single camera and mirrors. In: Proceedings of the 12th IEEE signal processing and communications applications conference, Kusadasi, pp 257–260Google Scholar
  6. 6.
    Hartley RI, Zisserman A (2002) Multiple view geometry in computer vision. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    Boerner H, Strecker H (1988) Automated X-ray inspection of aluminum casting. IEEE Trans Pattern Anal Mach Intell 10(1):79–91CrossRefGoogle Scholar
  8. 8.
    Filbert D, Klatte R, Heinrich W, Purschke M (1987) Computer aided inspection of castings. In: IEEE-IAS Annual Meeting, Atlanta, USA, pp 1087–1095Google Scholar
  9. 9.
    Heinrich W (1988) Automatische Röntgenserienprüfung von Gußteilen. PhD Thesis, Institut für Allgemeine Elektrotechnik, Technische Universität BerlinGoogle Scholar
  10. 10.
    Mohr G, Fock T (2004) X-ray inspection in the aerospace industry—state of the art, challenges and emerging techonologies. In: Proceedings of the 16th world conference on nondestructive testing, MontrealGoogle Scholar
  11. 11.
    Mahi Uddin Khan Md (1998) Non-destructive testing applications in commercial aircraft maintenance. In: Proceedings of the 7th European conference on non-destructive testing, CopenhagenGoogle Scholar
  12. 12.
    Kita Y, Highnam R, Brady M (2001) Correspondence between different view breast X-rays using curved epipolar lines. Comput Vis Image Underst 83(1):38–56zbMATHCrossRefGoogle Scholar
  13. 13.
    Rebuffel V, Pires S, Caplier A, Lamarque P (2003) Automatic delamination defects detection in radiographic sequences of rocket boosters. In: Proceedings of the international symposium on computed tomography and image processing for industrial radiology, BerlinGoogle Scholar
  14. 14.
    Jähne B, Haußecker H, Geißler P (1999) Handbook of computer vision and applications, vol 2. Signal processing and pattern recognition. Academic, San DiegoGoogle Scholar
  15. 15.
    Mery D (2003) Crossing line profile: a new approach to detecting defects in aluminium castings. Lect Notes Comput Sci 2749:725–732CrossRefGoogle Scholar
  16. 16.
    Mery D, da Silva R, Caloba LP, Rebello JMA (2003) Pattern recognition in the automatic inspection of aluminium castings. Insight 45(7):475–483CrossRefGoogle Scholar
  17. 17.
    Haralick RM, Shapiro LG (1992) Computer and robot vision. Addison-Wesley, New YorkGoogle Scholar
  18. 18.
    Sonka M, Hlavac V, Boyle R (1998) Image processing, analysis, and machine vision, 2nd edn. PWS Publishing, Pacific GroveGoogle Scholar
  19. 19.
    de Boor C (1978) A practical guide to splines. Springer, New YorkzbMATHGoogle Scholar
  20. 20.
    Sampson PD (1982) Fitting conic sections to ‘very scattered’ data: an iterative refinement of the bookstein algorithm. Comput Vis Graph Image Process 18:97–108CrossRefGoogle Scholar
  21. 21.
    Wells WM III (1997) Statistical approaches to feature-based object recognition. Int J Comput Vis 21(1–2):63–98CrossRefGoogle Scholar
  22. 22.
    Hsieh JW, Liao HYM, Fan KC, Ko MT, Hung YP (1997) Image registration using a new edge-based approach. Comput Vis Image Underst 67:112–130CrossRefGoogle Scholar
  23. 23.
    Black MJ, Jepson AD (1998) Eigen-tracking: robust matching and tracking of articulated objects using a view-based representation. Int J Comput Vis 26(1):63–84CrossRefGoogle Scholar
  24. 24.
    Hager GD, Belhumeur PN (1998) Efficient region tracking with parametric models of geometry and illumination. IEEE Trans Pattern Anal Mach Intell 20(10):1025–1039CrossRefGoogle Scholar
  25. 25.
    Baker S, Matthews I (2004) Lukas-Kanade 20 years on: a unifying framework. Int J Comput Vis 56(3):221–255CrossRefGoogle Scholar
  26. 26.
    Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th international joint conference on artificial intelligence, Vancouver, pp 674–679Google Scholar
  27. 27.
    Black MJ, Anandan P (1996) The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput Vis Image Underst 63(1):75–104CrossRefGoogle Scholar
  28. 28.
    Stewart CV (1999) Robust parameter estimation in computer vision. SIAM Rev 41(3):513–537zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New YorkzbMATHGoogle Scholar
  30. 30.
    Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. SIAM Rev 6:813–827Google Scholar
  31. 31.
    Baker S, Matthews I (2001) Equivalence and efficiency of image alignment algorithms. In: Proceedings of the 8th IEEE conference on computer vision and pattern recognition, Vancouver, vol 1, pp 1090–1097Google Scholar
  32. 32.
    Bruhn A, Weickert J, Kohlberger T, Schnörr C (2006) A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. Int J Comput Vis 70(3):257–277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Luis Pizarro
    • 1
    • 2
    Email author
  • Domingo Mery
    • 3
  • Rafael Delpiano
    • 3
  • Miguel Carrasco
    • 3
  1. 1.Mathematical Image Analysis Group, Faculty of Mathematics and Computer ScienceSaarland UniversitySaarbrückenGermany
  2. 2.Escuela de Ingeniería Informática, Facultad de IngenieríaUniversidad Diego PortalesSantiagoChile
  3. 3.Departamento de Ciencia de la ComputaciónPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations