Advertisement

Pattern Analysis and Applications

, Volume 9, Issue 2–3, pp 189–210 | Cite as

Fuzzy histograms, weak fuzzification and accumulation of periodic quantities

Application in two accumulation-based image processing methods
  • Leszek J. Chmielewski
Theoretical Advances

Abstract

The influence of the scale of a fuzzy membership function used to fuzzify a histogram is analysed. It is shown that for a class of fuzzifying functions it is possible to indicate the limit for fuzzification, at which the mode of the histogram equals the mean of the data accumulated in it. The fuzzification functions for which this appears are: the quadratic function for aperiodic histograms and the cosine square function for periodic ones. The scaled and clipped versions of these functions can be used to control the degree of fuzzification belonging to the interval [0,1]. While the quadratic function is related to the widely known Huber-type clipped mean or the kernel function derived from the Epanechnikov kernel, the clipped cosine square seems to be less known. The indications for using strong or weak fuzzification, according to the value of the fuzzification degree, are justified by examples in two applications: classic Hough transform-based image registration and novel accumulation-based line detection. Typically, the weak fuzzification is recommended. The images used are related to simulation images from teleradiotherapy and to mammographic images.

Keywords

Fuzzy histogram Accumulation Scale Mode to mean transition Limit fuzzification Periodic histogram Line detection Mammograms Image registration 

Notes

Acknowledgments

The research was financed by the Ministry of Education and Science as the research project no. 3 T11C 050 29 in 2005–2008.

References

  1. 1.
    Hough PVC (1959) Machine analysis of bubble chamber pictures. In: Proceedings of the international conference on high energy accelerators and instrumentation, CERNGoogle Scholar
  2. 2.
    Hough PVC (1962) A method and means for recognizing complex patterns. US Patent 3,069,654Google Scholar
  3. 3.
    Duda RD, Hart PE (1972) Use of the Hough transform to detect lines and curves in pictures. Commun ACM 15:11–15CrossRefGoogle Scholar
  4. 4.
    Merlin PM, Farber DJ (1975) A parallel mechanism for detecting curves in pictures. IEEE Trans Comput 24:96–98zbMATHGoogle Scholar
  5. 5.
    Kimme C, Ballard D, Sklansky J (1975) Finding circles by an array of accumulators. Commun ACM 18(2):120–122zbMATHCrossRefGoogle Scholar
  6. 6.
    Sklansky J (1978) On the Hough technique for curve detection. IEEE Trans Comput 27:923–926zbMATHGoogle Scholar
  7. 7.
    Maître H (1985) Un panorama de la transformation de Hough. Trait Signal 2(4):305–317Google Scholar
  8. 8.
    Illingworth J, Kittler J (1988) A survey of the Hough transform. Comp Vision Graph Image Process 44(1):87–116CrossRefGoogle Scholar
  9. 9.
    Leavers VF (1993) Which Hough transform? CVGIP Image Underst 58:250–264CrossRefGoogle Scholar
  10. 10.
    Aguado AS, Nixon MS, Montiel EM (1998) Parameterizing arbitrary shapes via Fourier descriptors for evidence-gathering extraction. Comput Vision Image Underst 69(2):202–211CrossRefGoogle Scholar
  11. 11.
    Aguado AS, Montiel EM, Nixon MS (2000) Bias error analysis of the Generalised Hough Transform. J Math Imaging Vis 12(1):25–42zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Grant MS, Nixon MS, Lewis PH (2002) Extracting moving shapes by evidence gathering. Pattern Recognit 35:1099–1114zbMATHCrossRefGoogle Scholar
  13. 13.
    Chmielewski L (2006) Detection of non-parametric lines by evidence accumulation: finding blood vessels in mammograms. In: Proceedings of international conference on computer vision and graphics ICCVG 2004, Warsaw, Poland, 22–24 September, 2004. Computational imaging and vision, vol 32. Springer, Berlin Heidelberg New York, pp 373–380Google Scholar
  14. 14.
    Chmielewski L (2005) Specification of the evidence accumulation-based line detection algorithm. In: Kurzyński M, Woźniak M, Puchała E et al (eds) Proceedings of international conference on computer recognition systems CORES 2005, Rydzyna, Poland, 22–25 May 2005. Volume of Advances in soft computing. Springer, Berlin Heidelberg New York, pp 355–362Google Scholar
  15. 15.
    Chmielewski L (2005) Scale and direction invariance of the evidence accumulation-based line detection algorithm. In Kurzyński M, Woźniak M, Puchała E et al (eds) Proceedings of international conference on computer recognition systems CORES 2005, Rydzyna, Poland, 22–25 May 2005. Volume of Advances in soft computing. Springer, Berlin Heidelberg New York, pp 363–370Google Scholar
  16. 16.
    Strauss O (1999) Use the Fuzzy Hough Transform towards reduction of the precision–uncertainty duality. Pattern Recognit 32:1911–1922CrossRefGoogle Scholar
  17. 17.
    Cohen M, Toussaint G (1977) On the detection of structures in noisy pictures. Pattern Recognit 9:95–98zbMATHCrossRefGoogle Scholar
  18. 18.
    Van Veen T, Grœn F (1981) Discretization errors in the Hough transform. Pattern Recognit 14:137–145CrossRefGoogle Scholar
  19. 19.
    O’Rourke J, Sloan K (1984) Dynamic quantization: two adaptive data structures for multidimensional space. IEEE Trans PAMI 3:266–288Google Scholar
  20. 20.
    Jolion J, Rozenfeld A (1989) A O(log n) pyramid Hough transform. Pattern Recognit Lett 9:343–349zbMATHCrossRefGoogle Scholar
  21. 21.
    Thrift P, Dunn S (1983) Approximating point-set images by line segments using a variance of the Hough transform. Comput Vis Graph Image Process 21:383–394CrossRefGoogle Scholar
  22. 22.
    Han JH, Kóczy LT, Poston T (1994) Fuzzy Hough transform. Pattern Recognit Lett 15(7):649–658CrossRefGoogle Scholar
  23. 23.
    Hampel FR, Ronchetii EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics: the approach based on influence functions. Wiley, New YorkzbMATHGoogle Scholar
  24. 24.
    Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New YorkzbMATHCrossRefGoogle Scholar
  25. 25.
    Huber PJ (2003) Robust statistics. Wiley, New YorkzbMATHGoogle Scholar
  26. 26.
    Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall, LondonzbMATHGoogle Scholar
  27. 27.
    Scott DW (1992) Multivariate density estimation: theory, practice, and visualization. Wiley, New YorkzbMATHGoogle Scholar
  28. 28.
    Wand MP, Jones MC (1995) Density estimation for statistics and data analysis. Chapman & Hall, LondonGoogle Scholar
  29. 29.
    Meer P (2004) Robust techniques for computer vision. In: Medioni G, Kang SB (eds) Emerging topics in computer vision. Prentice-Hall, Englewood Cliffs, pp 107–190Google Scholar
  30. 30.
    Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076zbMATHMathSciNetGoogle Scholar
  31. 31.
    Ratha NK, Karu K, Chen S, Jain AK (1996) A real-time matching system for large fingerprint databases. IEEE Trans PAMI 18(8):799–813. DOI 10.1109/34.531800Google Scholar
  32. 32.
    Zana F, Klein JC (1999) A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform. IEEE Trans Med Imaging 18(5):419–428. DOI 10.1109/42.774169Google Scholar
  33. 33.
    Seedahmed G, Martucci L (2002) Automatic image registration using Geometrically Invariant Parameter Space Clustering (GIPSC). In: Proceedings of ISPRS Commission III symposium on photogrammetric computer vision, Graz, Austria, 9–13 September 2002, pp A318–A323Google Scholar
  34. 34.
    Chmielewski L (2004) Choice of the Hough transform for image registration. In: Nowakowski A, Kosmowski BB (eds) Optical methods, sensors, image processing, and visualization in medicine. Proc SPIE, vol 5505, pp 122–134. DOI 10.1117/12.577912Google Scholar
  35. 35.
    Mardia KV (1972) Statistics of directional data. Academic, LondonzbMATHGoogle Scholar
  36. 36.
    Zwiggelaar R, Parr TC, Schumm JE et al (1999) Model-based detection of spiculated lesions in mammograms. Med Image Anal 3(1):39–62CrossRefGoogle Scholar
  37. 37.
    Liu S, Babbs CF, Delp EJ (2001) Multiresolution detection of spiculated lesions in digital mammograms. IEEE Trans Image Process 10(6):874–884zbMATHCrossRefGoogle Scholar
  38. 38.
    Kegelmeyer WP, Pruneda JM, Bourland PD et al. (1994) Computer-aided mammographic screening for spiculated lesions. Radiology 191:331–337Google Scholar
  39. 39.
    Kälviäinen H, Hirvonen P, Erkki O (1995) Probabilistic and non-probabilistic Hough transforms: overview and comparisons. Image Vis Comput 13(4):239–252CrossRefGoogle Scholar
  40. 40.
    Gottesfeld Brown L (1992) A survey of image registration techniques. ACM Comput Surv 24(4):325–376CrossRefGoogle Scholar
  41. 41.
    van den Elsen PA, Pol EJD, Viergever MA (1993) Medical image matching—a review with classification. IEEE Eng Med Biol 3:26–39CrossRefGoogle Scholar
  42. 42.
    Lester H, Arrige SR (1999) A survey of hierarchical non-linear medical image registration. Pattern Recognit 32:129–149CrossRefGoogle Scholar
  43. 43.
    Kozińska D, Chmielewski L (2003) Image registration and multimodal data integration (in Polish). In: Chmielewski L, Kulikowski JL, Nowakowski A (eds) Biomedical imaging (in Polish). Akademicka Oficyna Wydawnicza EXIT, Warsaw, pp 127–164Google Scholar
  44. 44.
    Gilhuijs KGA, van Herk M (1993) Automatic on-line inspection of patient setup in radiation therapy using digital portal images. Med Phys 20(3):667–677CrossRefGoogle Scholar
  45. 45.
    Gilhuijs KGA, El-Gayed AAH, van Herk M, Vijlbrief RE (1993) An algorithm for automatic analysis of portal images: clinical evaluation for prostate treatments. Radiother Oncol 29:261–268CrossRefGoogle Scholar
  46. 46.
    Eilertsen K, Skretting A, Tennvassas TL (1994) Methods for fully automated verification of patient set-up in external beam radiotherapy with polygon shaped fields. Phys Med Biol 39:993–1012CrossRefGoogle Scholar
  47. 47.
    Cai J, Zhou S-Q, Hopkinson J, Saxena AV, Chu J (1996) Alignment of multi-segmented anatomical features from radiation therapy images by using least squares fitting. Med Phys 23(13):2069–2075CrossRefGoogle Scholar
  48. 48.
    Cai J, Chu JCH, Saxena A, Lanzl LH (1998) A simple algorithm for planar image registration in radiation therapy. Med Phys 25(6):824–829CrossRefGoogle Scholar
  49. 49.
    Giraud LM, Pouliot J, Maldague X, Zaccarin A (1998) Automatic setup deviation measurements with electronic portal images for pelvic fields. Med Phys 25(7):1180–1185CrossRefGoogle Scholar
  50. 50.
    Bansal R, Staib LH, Chen Z et al (1998) A novel approach for the registration of 2D portal and 3D CT images for treatment setup verification in radiotherapy. In: Proceedings of 1st international conference on medical image computing and computer-assisted intervention MICCAI 98, Cambridge, Massachusetts, 11–13 October 1998. LNCS, vol 1496. Springer, Berlin Heidelberg New York, pp 1075–1086Google Scholar
  51. 51.
    Dekker N, Ploeger LS, van Herk M (2001) Evaluation of cost functions for gray value matching of 2D images in radiotherapy. In: Proceedings of 4th international conference on medical image computing and computer-assisted intervention MICCAI 01, Utrecht, The Netherlands, 14–17 October 2001. LNCS, vol 2208. Springer, Berlin Heidelberg New York, pp 1354–1355Google Scholar
  52. 52.
    Gut P, Chmielewski L, Kukołowicz P, Dabrowski A (2001) Edge-based robust image registration for incomplete and partly erroneous data. In: Proceedings of 9th international conference on computer analysis of images and patterns CAIP 2001, Warsaw, Poland, 5–8 September 2001. LNCS, vol 2124. Springer, Berlin Heidelberg New York, pp 309–316Google Scholar
  53. 53.
    Chmielewski L, Gut P, Kukołowicz PF, Dabrowski A (2002) Robust feature-based image registration using modified Hausdorff distance measure with the evolving quantile rank. In: Leberl F, Ferko A (eds) Proceedings of east–west vision EWV’02, Graz, Austria, 12–13 September 2002. Austrian Computer Society, pp 23–28Google Scholar
  54. 54.
    Chmielewski L, Kukołowicz PF, Gut P, Dabrowski A (2002) Assessment of the quality of radiotherapy with the use of portal and simulation images—the method and the software. J Med Inf Technol 3:MI-171–MI-179Google Scholar
  55. 55.
    Craig T, Sharpe M, Haycocks T et al (2003) Comparison of correction protocols for image-guided radiation therapy. In: Proceedings of 5th international conference on medical image computing and computer-assisted intervention MICCAI 03, Montréal, Canada, 15–18 November 2003. LNCS, vol 2879. Springer, Berlin Heidelberg New York, pp 264–270Google Scholar
  56. 56.
    Suckling J, Parker J, Dance D et al (1994) The Mammographic Images Analysis Society digital mammogram database. In: Gale AG, Astley SM, Dance DR et al (eds) Digital mammography. Exerpta medica international congress series, vol 1069, pp 375–378. http://www.wiau.man.ac.uk/services/MIAS/MIASweb.html
  57. 57.
    Whittaker ET, Watson GN (1958) A course of modern analysis, 4th edn. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2006

Authors and Affiliations

  1. 1.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarsawPoland

Personalised recommendations