Advertisement

Pattern Analysis and Applications

, Volume 8, Issue 4, pp 357–374 | Cite as

Complete classification of raw LIDAR data and 3D reconstruction of buildings

  • Gianfranco Forlani
  • Carla Nardinocchi
  • Marco Scaioni
  • Primo Zingaretti
Theoretical Advances

Abstract

LIDAR (LIght Detection And Ranging) data are a primary data source for digital terrain model (DTM) generation and 3D city models. This paper presents a three-stage framework for a robust automatic classification of raw LIDAR data as buildings, ground and vegetation, followed by a reconstruction of 3D models of the buildings. In the first stage the raw data are filtered and interpolated over a grid. In the second stage, first a double raw data segmentation is performed and then geometric and topological relationships among regions resulting from segmentation are computed and stored in a knowledge base. In the third stage, a rule-based scheme is applied for the classification of the regions. Finally, polyhedral building models are reconstructed by analysing the topology of building outlines, building roof slopes and eaves lines. Results obtained on data sets with different ground point density, gathered over the town of Pavia (Italy) with Toposys and Optech airborne laser scanning systems, are shown to illustrate the effectiveness of the proposed approach.

Keywords

Range images (LIDAR) DTM Segmentation Classification 3D city models Building extraction 

Notes

Acknowledgments

This work has been partly financed under the Italian national research project COFIN no. 9808229941_002.

References

  1. 1.
    Weibel R, Heller M (1991) Digital terrain modelling. In: Maguire DJ et al (eds) Geographical information systems—principles and applications. Longman, London, pp 269–297Google Scholar
  2. 2.
    Shiode N (2001) 3D urban models: recent developments in the digital modelling of urban environment in three-dimensions. GeoJournal 52(3):263–269CrossRefGoogle Scholar
  3. 3.
    Baltsavias EP (1999) Airborne laser scanning: existing systems and firms and other resources. ISPRS J Photogramm Remote Sens 54:164–198CrossRefGoogle Scholar
  4. 4.
    Ledermann W (1980) Kalman filtering. Handbook of applicable mathematics, statistics, vol IV. Emlyn Lloyd, New YorkGoogle Scholar
  5. 5.
    Kilian J, Haala N, Englich M (1996) Capture and evaluation of airborne laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci 31(3):383–388Google Scholar
  6. 6.
    Vosselman G, Maas H-G (2001) Adjustment and filtering of raw laser altimetry data. OEEPE Official Publ 40:62–72Google Scholar
  7. 7.
    Burman H (2002) Laser strip adjustment for data calibration and verification. Int Arch Photogramm Remote Sens Spat Inf Sci 34(3A):67–72MathSciNetGoogle Scholar
  8. 8.
    Noronha S, Nevatia R (2001) Detection and modeling of buildings from multiple aerial images. IEEE Trans Pattern Anal Mach Intell 23(5):501–518CrossRefGoogle Scholar
  9. 9.
    Kraus K, Pfeifer N (1998) Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J Photogramm Remote Sens 53(4):193–203CrossRefGoogle Scholar
  10. 10.
    Rottensteiner F, Briese C (2002) A new method for building extraction in urban areas from high-resolution LIDAR data. Int Arch Photogramm Remote Sens Spat Inf Sci 34(3A):295–301Google Scholar
  11. 11.
    Axelsson P (2000) DEM generation form laser scanner data using adaptive TIN models. Int Arch Photogramm Remote Sens Spat Inf Sci 33(B4/1):110–117Google Scholar
  12. 12.
    Brovelli MA, Cannata M, Longoni UM (2002) Managing and processing LIDAR data within GRASS. http://www.ing.unitn.it/~grass/conferences/GRASS2002/proceedings/proceedings/papers_by_author.html (accessed 4 April 2004). Also in Proceedings of open source GIS—GRASS user’s conference, Trento, Italy
  13. 13.
    Filin S (2002) Surface clustering from airborne laser scanning data. Int Arch Photogramm Remote Sens Spat Inf Sci 34(3A):119–124Google Scholar
  14. 14.
    Roggero M (2002) Object segmentation with region growing and principal component analysis. Int Arch Photogramm Remote Sens Spat Inf Sci 34(3A):289–294Google Scholar
  15. 15.
    Foerstner W (1999) 3D-city models: automatic and semiautomatic acquisition methods. In: Fritsch D, Spiller R (eds) Photogrammetric week ‘99. Wichmann Verlag, Heidelberg, pp 291–303Google Scholar
  16. 16.
    Guelch E, Mueller H, Läbe T (1999) Integration of automatic processes into semi-automatic building extraction. Int Arch Photogramm Remote Sens Spat Inf Sci 32(3-2W5):177–186Google Scholar
  17. 17.
    Guelch E (2000) Digital systems for automated cartographic feature extraction. Int Arch Photogramm Remote Sens Spat Inf Sci 33(B29):241–256Google Scholar
  18. 18.
    Haala N, Brenner C (1997) Interpretation of urban surface models using 2D building information. In: Gruen A, Baltsavias E, Henricsson O (eds) Automatic extraction of man-made objects from aerial and space images (II). Birkhauser Verlag, Basel, pp 213–222Google Scholar
  19. 19.
    Haala N (1999) Combining multiple data sources for urban data acquisition. In: Fritsch D, Spiller R (eds) Photogrammetric week ‘99. Wichmann Verlag, Heidelberg, pp 329–339Google Scholar
  20. 20.
    Brenner C (2000) Towards fully automatic generation of city models. Int Arch Photogramm Remote Sens Spat Inf Sci 33(3):85–92Google Scholar
  21. 21.
    Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395CrossRefMathSciNetGoogle Scholar
  22. 22.
    Weidner U, Foerstner W (1995) Towards automatic building extraction from high resolution digital elevation models. ISPRS J Photogramm Remote Sens 50(4):38–49CrossRefGoogle Scholar
  23. 23.
    Weidner U (1997) Digital surface models for building extraction. In: Gruen A, Baltsavias E, Henricsson O (eds) Automatic extraction of man-made objects from aerial and space images (II). Birkhauser Verlag, Basel, pp 193–202Google Scholar
  24. 24.
    Hoover A, Jean-Baptiste G, Jiang X, Flynn PJ, Bunke H, Goldgof DB, Bowyer K, Eggert DW, Fitzgibbon A, Fisher RB (1996) An experimental comparison of range image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 18(7):673–689CrossRefGoogle Scholar
  25. 25.
    ISPRS (2003) ISPRS test on extracting DEMs from point clouds: a comparison of existing automatic filters. http://www.enterprise.lr.tudelft.nl/frs/isprs/filtertest/ (accessed 4 April 2005)
  26. 26.
    Nardinocchi C, Forlani G (2001) Detection and segmentation of building roofs from Lidar data. In: Proceedings of ISPRS workshop on 3D digital imaging and modelling applications of heritage, industries, medicine & commercial land, Padua, ItalyGoogle Scholar
  27. 27.
    http://www.toposys.com/ (accessed 4 April 2005)
  28. 28.
    http://www.optech.ca/ (accessed 4 April 2005)

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • Gianfranco Forlani
    • 1
  • Carla Nardinocchi
    • 2
  • Marco Scaioni
    • 3
  • Primo Zingaretti
    • 4
  1. 1.Dipartimento Ingegneria CivileUniversità di ParmaParmaItaly
  2. 2.D.I.T.S.Università di Roma “La Sapienza”RomaItaly
  3. 3.D.I.I.A.R.Politecnico di MilanoMilanoItaly
  4. 4.D.I.I.G.A.Università Politecnica delle MarcheAnconaItaly

Personalised recommendations