Optical Review

, Volume 6, Issue 3, pp 204–210 | Cite as

Observation of Resonant Photon Tunneling in Photonic Double Barrier Structures



Reflectance and transmittance of 632.8 nm He-Ne laser light for photonic double barrier structures (consisting of a SF10 prism, SiO2 layer, Al or Al2O3 active layer, SiO2 layer and SF10 prism) were measured as a function of the angle of incidence for both the ρ- and s-polarized incidence. Sharp reflection dips and transmission peaks were observed at angles larger than the critical angle of total reflection. The appearance of the transmission peaks can be attributed to resonant photon tunneling through the photonic double barrier structures analogous to resonant electron tunneling through double potential barrier structures. Resonant tunneling is mediated by the long-range surface plasmon polariton in the case of the Al active layer and the electromagnetic guided modes in the case of the Al2O3 layer.

Key words

resonant photon tunneling frustrated total reflection surface plasmon guided mode double barrier structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Yablonovitch: Phys. Rev. Lett. 58 (1987) 2059.CrossRefPubMedGoogle Scholar
  2. 2.
    S. John: Phys. Rev. Lett. 58 (1987) 2486.CrossRefPubMedGoogle Scholar
  3. 3.
    E. Yablonovitch: J. Opt. Soc. Am. B 10 (1993) 283.Google Scholar
  4. 4.
    R. Y. Chiao, P. G. Kwiat and A. M. Steinberg: Physica B 175 (1991) 257.Google Scholar
  5. 5.
    B. Lee and W. Lee: J. Opt. Soc. Am. B 14 (1997) 777.Google Scholar
  6. 6.
    H. Mizuta and T. Tanoue: The Physics and Applications of Resonant Tunneling Diodes (Cambridge University Press, Cambridge, 1995) Chap. 2, p. 9.Google Scholar
  7. 7.
    A. F. Turner: J. de Phys. et le Radium, Paris 11 (1950) 444.Google Scholar
  8. 8.
    A. Otto: Optik 29 (1969) 246.Google Scholar
  9. 9.
    A. Salwén and L. Stensland: Opt. Commun. 2 (1970) 9.CrossRefGoogle Scholar
  10. 10.
    J. M. Vigoureux and F. Baïda: Opt. Commun. 101 (1993) 297.CrossRefGoogle Scholar
  11. 11.
    H. Reather: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics Vol. 111 (Springer-Verlag, Berlin, 1988) Chap. 2, p. 19.Google Scholar
  12. 12.
    F. Abeles: Ann. Phys. 3 (1948) 504.Google Scholar
  13. 13.
    C. E. Reed, J. Giergiel, J. C. Hemminger and S. Ushioda: Phys. Rev. B 36 (1987) 4990.CrossRefGoogle Scholar
  14. 14.
    T. Kume, T. Kitagawa, S. Hayashi and K. Yamamoto: Surf. Sci. 395 (1998) 23.CrossRefGoogle Scholar
  15. 15.
    D. Y. Smith, E. Shiles and M. Inokuti: Handbook of Optical Constants of Solids, ed. E. D. Palik (Academic Press, Orlando, 1985) p. 369.Google Scholar
  16. 16.
    F. Yang, J. R. Samble and G. W. Bradberry: Phys. Rev. B 44 (1991) 5855.CrossRefGoogle Scholar
  17. 17.
    E. L. Wolf: Principles of Electron Tunneling Spectroscopy (Oxford University Press, New York, 1985) Chap. 2, p. 27.Google Scholar

Copyright information

© The Optical Society of Japan 1999

Authors and Affiliations

  • Shinji Hayashi
    • 1
  • Hiromasa Kurokawa
    • 2
  • Hirofumi Oga
    • 2
  1. 1.Faculty of Engineering, Kobe UniversityDepartment of Electrical and Electronics EngineeringRokkodai, Nada, KobeJapan
  2. 2.Division of Electrical and Electronics Engineering, The Graduate School of Science and Technology, Kobe UniversityRokkodai, Nada, KobeJapan

Personalised recommendations