Optical Review

, Volume 2, Issue 5, pp 394–400 | Cite as

Lidar Multiple Scattering in Water Droplet Clouds: Toward an Improved Treatment

  • Kenneth Sassen
  • Hongjie Zhao
ENVIRONMENTAL, BIOLOGICAL, AND SPACE OPTICS

Abstract

Although it has long been recognized that the effects of photon multiple scattering generally need to be accounted for in the analysis of lidar cloud returns, this is a difficult problem and current approaches are still rudimentary. The multiple scattering process is controlled by the size of the lidar beamwidth and the distance to the cloud, which jointly determine the lidar footprint, but cloud microphysical content (i.e., particle size, concentration, and shape) exerts a strong influence on the range distribution and depolarization of the returned energy. Since clouds are inherently inhomogeneous with height, it is our premise that vertically homogeneous cloud simulations based on idealized particle size distributions lead to misleading results. We offer a more realistic approach based on the contents of growing water droplet clouds predicted by a sophisticated adiabatic cloud model, which are offered for use as new standard vertically-inhomogeneous cloud models. Lidar returned signal and depolarization profiles derived from our analytical double-scattering method are given for inter-comparison purposes.

Key words

lidar multiple scattering cloud studies depolarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.M. Schotland, K. Sassen and R.J. Stone: J. Appl. Meteorol. 10 (1992) 2914.Google Scholar
  2. 2.
    S.R. Pal and A.I. Carswell: Appl. Opt. 12 (1973) 1530.Google Scholar
  3. 3.
    K. Sassen: Bull. Am. Meteorol. Soc. 72 (1991) 1848.CrossRefGoogle Scholar
  4. 4.
    S.T. Shipley, E.W. Eloranta and J.A. Weinman: J. Appl. Aerosol Sci. 3 (1972) 455.CrossRefGoogle Scholar
  5. 5.
    A.I. Carswell and S.R. Pal: Appl. Opt. 19 (1980) 4123.Google Scholar
  6. 6.
    S.R. Pal and A.I. Carswell: Appl. Opt. 24 (1985) 3464.Google Scholar
  7. 7.
    K. Sassen, H. Zhao and G.C. Dodd: Appl. Opt. 31 (1992) 2914.Google Scholar
  8. 8.
    K. Sassen and K.N. Liou: J. Atmos. Sci. 36 (1979) 852.CrossRefGoogle Scholar
  9. 9.
    K. Sassen: J. Appl. Meteorol. 15 (1976) 292.CrossRefGoogle Scholar
  10. 10.
    K. Sassen and H. Zhao: Proc. MUSCLE 4 (1991) p. 22.Google Scholar
  11. 11.
    L. Liao and K. Sassen: Atmos. Res. 34 (1994) 231.Google Scholar
  12. 12.
    K. Sassen and G.C. Dodd: J. Atmos. Sci. 45 (1988) 1357.CrossRefGoogle Scholar
  13. 13.
    G. Hanel: Aerosol Sci. 3 (1972) 455.CrossRefGoogle Scholar
  14. 14.
    K. Sassen and R.L. Petrilla: Appl. Opt. 25 (1986) 1450.Google Scholar
  15. 15.
    U. Wandinger: Ph. D. Dissertation, University of Hamburg (1994) p. 125.Google Scholar
  16. 16.
    K. Sassen and H. Zhao: J. Appl. Meteorol. 32 (1993) 1548.CrossRefGoogle Scholar
  17. 17.
    D. Deirmendjian: Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969) Chap. 4.Google Scholar
  18. 18.
    L. Bissonnette: Defence Research Establishment Valcartier, Electro-Optics Division, P.O. Box 8800, Courcelette, P.Q., GOA 1RO Canada (Fax: 418-844-4511, Email: lbisson@sv0.drev.dnd.ca).Google Scholar

Copyright information

© The Optical Society of Japan 1995

Authors and Affiliations

  • Kenneth Sassen
    • 1
  • Hongjie Zhao
    • 1
  1. 1.Department of MeteorologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations