Phase imaging based on modified transport of intensity equation using liquid crystal variable retarder with partial coherent illumination

  • Alok K. Gupta
  • Areeba Fatima
  • Naveen K. NishchalEmail author
  • Takanori Nomura
Regular Paper


In this paper, we demonstrate a non-interferometric phase imaging technique based on modified transport of intensity equation (TIE) through a liquid crystal variable retarder (LCVR) and partial coherent illumination. The LCVR has been used in pure phase shifter configuration for creating refractive index variation. The modified TIE eliminates the need of mechanical displacement of camera or object, since it needs recording of only two intensity images with different refractive indices. A light-emitting diode (LED) has been used as a light source to avoid the usual speckle problems in coherent imaging. Although LCVR is a versatile device, its application towards phase recovery is less studied. The applicability of the method has been demonstrated through imaging a USAF resolution chart, ultra-violet glue drop, micro-lens, and onion’s peel. The result of onion’s peel has also been compared with a commercial bright-field microscope.


Phase imaging Liquid crystal variable retarder Transport of intensity equation LED illumination 



Mr. Rouchin Mahendra from IRDE Dehradun, India is acknowledged for providing micro-lens array.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.


  1. 1.
    Goodman, J.W.: Introduction to Fourier Optics. Roberts and Company Publishers, Colardo, USA (2005)Google Scholar
  2. 2.
    Fienup, J.R.: Phase retrieval algorithms: a personal tour. Appl. Opt. 52, 45–56 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Kim, M.K.: Principles and techniques of digital holographic microscopy. SPIE Rev. 1, 018005 (2010)Google Scholar
  4. 4.
    Nishchal, N.K., Joseph, J., Singh, K.: Full phase encryption using digital holography. Opt. Eng. 43, 2656–2966 (2004)Google Scholar
  5. 5.
    Khare, K., Ali, P.T.S., Joseph, J.: Single shot high resolution digital holography. Opt. Express 21, 2581–2591 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Zheng, G., Horstmeyer, R., Yang, C.: Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 7, 739–745 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N.: Phase retrieval with application to optical imaging. IEEE Sig. Proc. Magazine 32, 87–109 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Guo, C., Liu, S., Sheridan, J.T.: Iterative phase retrieval algorithms I: optimization. Appl. Opt. 54, 4698–4708 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Gopinathan, U., Situ, G., Naughton, T.J., Sheridan, J.T.: Non-interferometric phase retrieval using a fractional Fourier system. J. Opt. Soc. Am. A25, 108–115 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Schnars, U., Juptner, W.: Digital recording and numerical reconstruction of holograms. Inst. Phys. Publ. 13, R85–R101 (2002)Google Scholar
  11. 11.
    Maiden, A.M., Rodenburg, J.M.: An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009)CrossRefGoogle Scholar
  12. 12.
    Teague, M.R.: Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am. 73, 1434–1441 (1983)ADSCrossRefGoogle Scholar
  13. 13.
    Pitkäaho, T., Pitkäkangas, V., Niemelä, M., Rajput, S.K., Nishchal, N.K., Naughton, T.J.: Space-variant video compression and processing in digital holographic microscopy sensor networks with application to potable water monitoring. Appl. Opt. 57, E190–E198 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    Banerjee, P., Basunia, M., Poon, T.-C., Zhang, H.: An optimized transport-of-intensity solution for phase imaging. Proc. SPIE 9870, 98700A (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Zuo, C., Chen, Q., Qu, W., Asundi, A.: High-speed transport-of-intensity phase microscopy with an electrically tuneable lens. Opt. Express 21, 24060–24075 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Nguyen, T., Nehmetallah, G.: Non-interferometric tomography of phase objects using spatial light modulators. J. Imaging 2, 1–16 (2016)Google Scholar
  17. 17.
    Mayo, S., Davis, T., Gureyev, T., Miller, P., Paganin, D., Pogany, A., Stevenson, A., Wilkins, S.: X-ray phase-contrast microscopy and microtomography. Opt. Express 11, 2289–2302 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Singh, M., Khare, K.: Single-shot full resolution region-of-interest (ROI) reconstruction in image plane digital holographic microscopy. J. Mod. Opt. 65, 1127–1134 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Cogswell, C.J., Sheppard, C.J.R.: Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging. J. Microsc. 165, 81–101 (1992)CrossRefGoogle Scholar
  20. 20.
    Panezai, S., Zhao, J., Wang, Y., Wang, D., Rong, L.: Speckle suppression in off-axis lensless Fourier transform digital holography. Opt. Commun. 397, 100–104 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Ferraro, P., Wax, A., Zalevsky, Z. (eds.): Coherent Light Microscopy. Springer, Heidelberg (2011)Google Scholar
  22. 22.
    Matoba, O., Quan, X., Xia, P., Awatsuji, Y., Nomura, T.: Multimodal imaging based on digital holography. Proc. IEEE 105, 906–923 (2017)CrossRefGoogle Scholar
  23. 23.
    Nehmetallah, G., Banerjee, P.P.: Applications of digital and analog holography in three-dimensional imaging. Adv. Opt. Photon. 4, 472–553 (2012)CrossRefGoogle Scholar
  24. 24.
    Montresor, S., Picart, P.: Quantitative appraisal for noise reduction in digital holographic phase imaging. Opt. Express 24, 14322–14343 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Samsheerali, P.T., Khare, K., Joseph, J.: Quantitative phase imaging with single shot digital holography. Opt. Commun. 319, 85–89 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Liu, J.-P., Tahara, T., Hayasaki, Y., Poon, T.-C.: Incoherent digital holography: a review. Appl. Sci. 8, 1–18 (2018)CrossRefGoogle Scholar
  27. 27.
    Kumar, D., Nishchal, N.K.: Synthesis and reconstruction of multi-plane phase only holograms. Optik 127, 12069–12077 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Vijayakumar, A., Rosen, J.: Interferenceless coded aperture correlation holography–a new technique for recording incoherent digital holograms without two-wave interference. Opt. Express 25, 13883–13896 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Sun, J., Chen, Q., Zhang, J., Fan, Y., Zuo, C.: Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography. Opt. Lett. 43, 3365 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    Almoro, P.F., Waller, L., Agour, M., Falldorf, C., Pedrini, G., Osten, W., Hanson, S.G.: Enhanced deterministic phase retrieval using a partially developed speckle field. Opt. Lett. 37, 2088–2090 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Komuro, K., Nomura, T., Yamazaki, Y.: Transport of intensity phase imaging for pure phase objects in computational ghost imaging. Proc. SPIE 10816, 108160G (2018)Google Scholar
  32. 32.
    Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A., Chen, Q.: High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci. Rep. 7, 1–22 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Martinez-Carranza, J., Falaggis, K., Kozacki, T.: Fast and accurate phase-unwrapping algorithm based on the transport of intensity equation. Appl. Opt. 56, 7079–7088 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Waller, L., Kou, S.S., Sheppard, C.J.R., Barbastathis, G.: Phase from chromatic aberrations. Opt. Express 18, 22817–22825 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Camacho, L., Micó, V., Zalevsky, Z., García, J.: Quantitative phase microscopy using defocusing by means of a spatial light modulator. Opt. Express 18, 6755–6766 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Zuo, C., Chen, Q., Qu, W., Asundi, A.: Noninterferometric single-shot quantitative phase microscopy. Opt. Lett. 38, 3538–3541 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Komuro, K., Nomura, T.: Quantitative phase imaging using transport of intensity equation with multiple bandpass filters. Appl. Opt. 55, 5180–5186 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Chen, C.-H., Hsu, H.-F., Chen, H.-R., Hsieh, W.-F.: Non-interferometric phase retrieval using refractive index manipulation. Sci. Rep. 7, 1–8 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    Gupta, A.K., Fatima, A., Nishchal, N.K.: Phase imaging based on transport of intensity equation using liquid crystal variable waveplate. In: Digital Holography and Three-dimensional Imaging, OSA Technical Digest, paper M5B.4 (2019)Google Scholar
  40. 40.
    Zysk, A.M., Schoonover, R.W., Carney, P.S., Anastasio, M.A.: Transport of intensity and spectrum for partially coherent fields. Opt. Lett. 35, 2239–2241 (2010)ADSCrossRefGoogle Scholar
  41. 41.
  42. 42.
    Gupta, A.K., Nishchal, N.K.: Phase characterisation of liquid crystal spatial light modulator. In: 3rd International Conference on Microwave and Photonics (ICMAP), pp. 1–2, Dhanbad (2018)  Google Scholar

Copyright information

© The Optical Society of Japan 2020

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology PatnaPatnaIndia
  2. 2.Faculty of Systems EngineeringWakayama UniversityWakayamaJapan

Personalised recommendations