Extended focus optical coherence tomography with Fresnel lens

  • Haiyi BianEmail author
  • Wanrong Gao
  • Hua Yao
Regular Paper


We report a Fresnel lens based spectral domain optical coherence tomography (SDOCT) setup to overcome the trade-off between lateral resolution and focusing depth which is one of the main problems for OCT system. We demonstrated the feasibility of the Fresnel lens based SDOCT system by measuring the lateral resolution at different depth positions and compared these results with that obtained by conventional SDOCT illuminated with a light source of a central wavelength of 840 nm and a bandwidth of 50 nm. These results indicated that the Fresnel lens based SDOCT can maintain a constant lateral resolution (~ 6.2 μm or better in our system) over a depth of ~ 2 mm which is nearly 1.2 mm larger than conventional SDOCT. This advantage of the proposed method is very useful for SDOCT based imaging technique applied in the clinical application.


Lateral resolution Spectral domain optical coherence tomography Optical focusing depth 



We would like to thank the National Natural Science Foundation of China (NSFC, No: 61275198, 60978069) and the Natural Science Foundation of Jiangsu Higher Education Institutions of China (No: 19KJD140001).


  1. 1.
    Puliafito, C.A., Hee, M.R., Lin, C.P., Reichel, E., Schuman, J.S., Duker, J.S., Izatt, J.A., Swanson, E.A., Fujimoto, J.G.: Imaging of macular diseases with optical coherence tomography. Ophthalmology 102, 217 (1995)CrossRefGoogle Scholar
  2. 2.
    Zang, P., Gao, S.S., Hwang, T.S., Flaxel, C.J., Wilson, D.J., Morrison, J.C., Huang, D., Li, D., Jia, Y.: Automated boundary detection of the optic disc and layer segmentation of the peripapillary retina in volumetric structural and angiographic optical coherence tomography. Biomed. Opt. Exp. 8, 1306 (2017)CrossRefGoogle Scholar
  3. 3.
    Ding, Z., Ren, H., Zhao, Y., Nelson, J.S., Chen, Z.: High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt. Lett. 27, 243 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Blatter, C., Grajciar, B., Eigenwillig, C.M., Wieser, W., Biedermann, B.R., Huber, R., Leitgeb, R.A.: Extended focus high-speed swept source OCT with self-reconstructive illumination. Opt. Exp. 19, 12141 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Ralston, T.S., Marks, D.L., Kamalabadi, F., Boppart, S.A.: Deconvolution methods for mitigation of transverse blurring in optical coherence tomography. IEEE T. Image Process. 14, 1254 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Yasuno, Y., Sugisaka, J.I., Sando, Y., Nakamura, Y., Makita, S., Itoh, M., Yatagai, T.: Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography. Opt. Exp. 14, 1006 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Yu, L.F., Rao, B., Zhang, J., Su, J.P., Wang, Q., Guo, S.G., Chen, Z.P.: Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method. Opt. Exp. 15, 7634 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Xu, Y., Chng, X.K.B., Adie, S.G., Boppart, S.A., Carney, P.S.: Multifocal interferometric synthetic aperture microscopy. Opt. Exp. 22, 16606–16618 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Chen, C., Cheng, K.H.Y., Jakubovic, R., Jivraj, J., Ramjist, J., Deorajh, R., Gao, W., Barnes, E., Chin, L., Yang, V.X.D.: High speed, wide velocity dynamic range doppler optical coherence tomography (Part V): optimal utilization of multi-beam scanning for Doppler and speckle variance microvascular imaging. Opt. Exp. 25, 7761 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Kitaura, N., Ogata, S., Mori, Y.: Spectrometer employing a micro-Fresnel lens. Opt. Eng. 34, 584 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    Zhang, N., Chn, T.Y., Wang, C.M., Zhang, J., Huo, T.C., Zheng, J.G., Xue, P.: Spectral-domain optical coherence tomography with a Fresnel spectrometer. Opt. Lett. 37, 1307 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Bian, H.Y., Gao, W.R., Zhang, X.L., Chen, C.L.: Reconstruction method based on the detected matrix for spectral-domain optical coherence tomography. Acta Optica Sinica 34, 0211003 (2014)CrossRefGoogle Scholar
  13. 13.
    Smith, E.D.J., Zvyagin, A.V., Sampson, D.D.: Real-time dispersion compensation in scanning interferometry. Opt. Lett. 27, 1998 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Gao, W.: Dispersion properties of grating-based rapid scanning optical delay lines. Appl. Opt. 46, 986 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Hamzah, F., Shinojima, A., Mori, R., Yuzawa, M.: Choroidal thickness measurement by enhanced depth imaging and swept-source optical coherence tomography in central serous chorioretinopathy. BMC Ophthalmol. 14, 145 (2014)CrossRefGoogle Scholar
  16. 16.
    Regatieri, C.V., Branchini, L., Carmody, J., Fujimoto, J.G., Duker, J.S.: Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina (Philadelphia, Pa.) 32, 563 (2012)CrossRefGoogle Scholar
  17. 17.
    Branchini, L., Regatieri, C.V., Flores Moreno, I., Baumann, B., Fujimoto, J.G., Duker, J.S.: Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems. Ophthalmology 119, 119–123 (2012)CrossRefGoogle Scholar
  18. 18.
    Mwanza, J.C., Durbin, M.K., Budenz, D.L., Sayyad, F.E., Chang, R.T., Neelakantan, A., Godfrey, D.G., Carter, R., Crandall, A.S.: Glaucoma diagnostic accuracy of ganglion cell–inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 119, 1151 (2012)CrossRefGoogle Scholar
  19. 19.
    Alasil, T., Wang, K., Keane, P.A., Lee, H., Baniasadi, N., de Boer, J.F., Johannes, F., Chen, T.C.: Analysis of normal retinal nerve fiber layer thickness by age, sex, and race using spectral domain optical coherence tomography. J. Glaucoma 22, 532 (2013)CrossRefGoogle Scholar
  20. 20.
    Nakatani, Y., Higashide, T., Ohkubo, S., Takeda, H., Sugiyama, K.: Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J. Glaucoma 20, 252 (2011)CrossRefGoogle Scholar
  21. 21.
    Nishihara, H., Suhara, T.: I Micro Fresnel lenses, progress in optics, pp. 1–37. Elsevier, Amsterdam (1987)Google Scholar
  22. 22.
    Gambichler, T., Moussa, G., Sand, M., Sand, D., Altmeyer, P., Hoffmann, K.: Applications of optical coherence tomography in dermatology. J. Dermatol. Sci. 40, 85 (2005)CrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.Faculty of Electronic Information EngineeringHuaiyin Institute of TechnologyHuai’anChina
  2. 2.Institute of Electrical Engineering and Photoelectric TechnologyNanjing University of Science and TechnologyNanjingChina

Personalised recommendations