Optical Review

, Volume 26, Issue 6, pp 713–718 | Cite as

Multi-wavelength discrete pulse train generation using chromatic aberration of time lens for ultrafast single-shot optical imaging

  • Nobuhide YokotaEmail author
  • Hiroshi Yasaka
Short Note


We investigate a multi-wavelength discrete pulse train generation technique in which a relative delay is precisely controlled by a chromatic aberration of a time lens for application to ultrafast single-shot optical imaging based on sequentially timed all-optical mapping photography (STAMP). We use an intensity modulator functioning as a time filter, a phase modulator functioning as a time lens, and a standard single-mode fiber functioning as a dispersive medium to experimentally confirm four wavelength-multiplexed optical pulses, each with a duration of 17 ps and a tunable time interval, that are triggered by a ~ 100-ps electrical pulse signal. Our proposed laser configuration is suitable for the STAMP system under a moderate frame interval of a picosecond range in terms of compactness, cost, and energy consumption.


Pulse generation Optical fiber Time lens Chromatic aberration STAMP 



This work was supported by Konica Minolta Science and Technology Foundation and JSPS KAKENHI Grant number 17K14691.

Compliance with ethical standards

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Liu, X., Du, D., Mourou, G.: Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quant. Electron. 33, 1706–1716 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Lanvin, T., Conkey, D.B., Frobert, A., Valentin, J., Goy, J.-J., Cook, S., Giraud, M.-N., Psaltis, D.: Subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Biomed. Opt. Express 6, 2552–2561 (2015)CrossRefGoogle Scholar
  3. 3.
    Yang, Y., Wilson, R.B., Gorchon, J., Lambert, C.-H., Salahuddin, S., Bokor, J.: Ultrafast magnetization reversal by picosecond electrical pulses. Sci. Adv. 3, e1603117 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Iihama, S., Xu, Y., Deb, M., Malinowski, G., Hehn, M., Gorchon, J., Fullerton, E.E., Mangin, S.: Single-shot multi-level all-optical magnetization switching mediated by spin transport. Adv. Mater. 30, 1804004 (2018)CrossRefGoogle Scholar
  5. 5.
    Kaji, T., Ito, S., Miyasaka, H., Hosokawa, Y., Masuhara, H., Shukunami, C., Hiraki, Y.: Nondestructive micropatterning of living animal cells using focused femtosecond laser-induced impulsive force. Appl. Phys. Lett. 91, 023904 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Hayasaki, Y., Isaka, M., Takita, A., Juodkazis, S.: Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass. Opt. Express 19, 5725–5734 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Mochizuki, F., Kagawa, K., Okihara, S., Seo, M.-W., Zhang, B., Takasawa, T., Yasutomi, K., Kawahito, S.: Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor. Opt. Express 24, 4155–4176 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Liang, J., Wang, L.V.: Single-shot ultrafast optical imaging. Optica 5, 1113–1127 (2018)Google Scholar
  9. 9.
    Nakagawa, K., Iwasaki, A., Oishi, Y., Horisaki, R., Tsukamoto, A., Nakamura, A., Hirosawa, K., Liao, H., Ushida, T., Goda, K., Kannari, F., Sakuma, I.: Sequentially timed all-optical mapping photography (STAMP). Nat. Photon. 8, 695–700 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Suzuki, T., Isa, F., Fujii, L., Hirosawa, K., Nakagawa, K., Goda, K., Sakuma, I., Kannari, F.: Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering. Opt. Express 23, 30512–30522 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Suzuki, T., Hida, R., Yamaguchi, Y., Nakagawa, K., Saiki, T., Kannari, F.: Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution. Appl. Phys. Express 10, 092502 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    van Howe, J., Hansryd, J., Xu, C.: Multiwavelength pulse generator using time-lens compression. Opt. Lett. 29, 1470–1472 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Jiang, X., Huo, L., Wang, D., Chen, X., Lou, C.: Multiwavelength ultrashort pulse generator using a diverging time-lens. Opt. Eng. 54, 126107 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Kolner, B.H.: Space-time duality and the theory of temporal imaging. IEEE J. Quant. Electron. 30, 1951–1963 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    Azana, J., Berger, N.K., Levit, B., Fischer, B.: Spectro-temporal imaging of optical pulses with a single time lens. IEEE Photon. Technol. Lett. 16, 882–883 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    van Howe, J., Xu, C.: Ultrafast optical signal processing based upon space-time dualities. J. Lightw. Technol. 24, 2649–2662 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Salem, R., Foster, M.A., Gaeta, A.L.: Application of space-time duality to ultrahigh-speed optical signal processing. Adv. Opt. Photon. 5, 274–317 (2013)CrossRefGoogle Scholar
  18. 18.
    Sakamoto, T., Kawanishi, T., Izutsu, M.: Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator. Opt. Lett. 32, 1515–1517 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Yokota, N., Abe, K., Mieda, S., Yasaka, H.: Harmonic superposition for tailored optical frequency comb generation by a Mach–Zehnder modulator. Opt. Lett. 41, 1026–1029 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Pasquazi, A., Peccianti, M., Razzari, L., Moss, D.J., Coen, S., Erkintalo, M., Chembo, Y.K., Hansson, T., Wabnitz, S., Del’Haye, P., Xue, X., Weiner, A.M., Morandotti, R.: Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhang, J., Haq, B., O’Callaghan, J., Gocalinska, A., Pelucchi, E., Trindade, A.J., Corbett, B., Morthier, G., Roelkens, G.: Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser. Opt. Express 26, 8821–8830 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Hinakura, Y., Arai, H., Baba, T.: 64 Gbps Si photonic crystal slow light modulator by electro-optic phase matching. Opt. Express 27, 14321–14327 (2019)ADSCrossRefGoogle Scholar
  23. 23.
    Tan, D.T.H., Ikeda, K., Saperstein, R.E., Slutsky, B., Fainman, Y.: Chip-scale dispersion engineering using chirped vertical gratings. Opt. Lett. 33, 3013–3015 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Park, H., Fang, A.W., Cohen, O., Jones, R., Paniccia, M.J., Bowers, J.E.: A hybrid AlGaInAs–silicon evanescent amplifier. IEEE Photon. Technol. Lett. 19, 230–232 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Tamamitsu, M., Nakagawa, K., Horisaki, R., Iwasaki, A., Oishi, Y., Tsukamoto, A., Kannari, F., Sakuma, I., Goda, K.: Design for sequentially timed all-optical mapping photography with optimum temporal performance. Opt. Lett. 40, 633–636 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Wu, R., Supradeepa, V.R., Long, C.M., Leaird, D.E., Weiner, A.M.: Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35, 3234–3236 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Yokota, N., Igarashi, R., Yasaka, H.: Optical Nyquist pulse generation by using a dual-electrode Mach–Zehnder modulator. Opt. Lett. 42, 1856–1859 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Morohashi, I., Sakamoto, T., Kawanishi, T., Hosako, I.: Frequency tunable millimeter wave pulse generation using mach-zehnder-modulator-based flat comb generator. In: IEEE Intl. Topic. Meeting on Microw. Photon., pp. 89–92 (2011)Google Scholar
  29. 29.
    Morohashi, I., Sakamoto, T., Sekine, N., Kawanishi, T., Kasamatsu, A., Hosako, I.: Generation of arbitrarily patterned pulse trains in the THz range by spectral synthesis of optical combs. IEICE Trans. Electron. E98-C, 793–798 (2015)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.Research Institute of Electrical CommunicationTohoku UniversitySendaiJapan

Personalised recommendations